ママのスキンケアのお悩みにおすすめアイテム

lim[x→+∞](x^n/e^x)=0 の証明
「任意のn∈Nに対して、lim[x→+∞](x^n/e^x)=0 が成り立つことをTaylorの定理を用いずに示せ。」という問題です。Taylorの定理を使わない場合、どのように証明すればよろしいのでしょうか?
宜しくお願い致します。

A 回答 (2件)

f(x)=x^(n+1)/e^x (x>0) を考える.


f ' (x)=(x^n(n+1-x))/e^x
よりf(x)の最大値はf(n+1)=((n+1)^(n+1))/e^(n+1)
そこで次の不等式が成り立つ.
0<x^n/e^x=(x^(n+1)/e^x)・(1/x)≦((n+1)^(n+1))/e^(n+1)・(1/x)
極限をとると,
lim[x→∞]((n+1)^(n+1))/e^(n+1)・(1/x)=0
ハサミウチでlim[x→∞]x^n/e^x=0
    • good
    • 13
この回答へのお礼

大変わかりやすいご説明誠ににありがとうございました。感謝申し上げます。

お礼日時:2010/04/08 16:29

基本に戻る

    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qlim[n→∞](1-1/n)^n=1/e について

こんにちは

lim[n→∞](1+1/n)^n=e
が成り立つことは簡単に示せるのですが、
lim[n→∞](1-1/n)^n=1/e
となることの証明はどのようにすればいいのでしょうか?
ご存知の方がいらっしゃいましたらご回答よろしくお願いします。

Aベストアンサー

e=lim(1+t)^(1/t)   〔t→0〕
がeの定義なので、(t→+0でもt→-0でもOK)
-1/n=tとおきます。

n→∞のとき、t→-0なので、
(与式)=lim(1+t)^(-1/t)   〔t→-0〕

これを変形すると、
=lim{(1+t)^(1/t)}^-1   〔t→-0〕
=e^-1
=1/e

高校の範囲なら、この証明で大丈夫です。

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Q極限を求める

lim(x→∞)x/e^x を求めよ。
という問題です。
答えを出そうとしたのですが教科書に決まりとして答えが「0」になると書いてしまっていました。(解説なし)
ここで質問なんですがこの問題を解くときにlim(x→∞)logx/x=0からlogx=tと置いてlim(x→∞)t/e^tを求めるやり方を逆にして解くのがよいのでしょうか?
また、他にいい方法はありませんか?

Aベストアンサー

y=e^x  の x=0  での接線を考えると
e^x>1+x>x    
よって
e^x>x  これに x/2 を代入すると
e^(x/2)>x/2  両辺を二乗すると
e^x>(x/2)^2  
(e^x)/x>x/4  → ∞  ( x → ∞ ) 
したがって
x/e^x=1/{(e^x)/x}  → 1/∞=0  ( x → ∞ ) 

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qlim[x→0](e^x - e^-x)/x

lim[x→0](e^x - e^-x)/xの解き方について、答えには
(e^x - e^-x)/x
=(e^2x - 1)/xe^x
=(e^x - 1)/x ・ (e^x + 1)/e^x
→→1・2
x→0
と書いてあるのですが
(e^x - 1)/xはxを0に近づけると0/0で不定形になるはずにも関わらず、上記の答えでは1に収束しています
これはなぜですか?

Aベストアンサー

f(x)=e^xとすれば
(e^x - 1)/x=
(f(x)-f(0))/(x-0)
xを0に近づければ
これはf'(0)=1だということです

Qロピタルの定理

ロピタルの定理を繰り返し適用する方法で求めよ。
lim[x→+∞]x^n/a^x(a>1,nは自然数)


ロピタルの定理は何となくですが読めばわかるのですが、解き方がわかりません。
よろしくお願いします。

Aベストアンサー

ロピタルの定理をn回使って分子分母をそれぞれn回微分すると
分子のx^nは
n! (nの階乗:n(n-1)(n-2)…3・2・1)
になります。
分母のa^x=e^{xlog(a)}は
(a^x){log(a)}^n
になります。
したがって
[n!/{log(a)}^n]/a^x→0 …(定数)/∞形
となります。

Qy=x^(1/x) の 微分

y=x^(1/x) の微分を教えてください。
簡単な問題なのにすいません。

Aベストアンサー

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log|y|)'
= y' / y
= y' / { x^(1/x) }

となります。

(log|y|)' = { (1/x)log|x| }'
→y' / { x^(1/x) } = { (1/x)log|x| }'

この両辺に{ x^(1/x) }をかけると

y' = { x^(1/x) } × { (1/x)log|x| }'

となります。
なので{ (1/x)log|x| }'の計算をすればy'が求まります。
積の微分で解いてください。

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qy=x^xの導関数は?

y'=x*x^x-1

で結局もとに戻ってしまうのですがそんな
はずは無いと思うんです。

答えのみでよいので教えてください。
(できれば導き方を教えていただければ幸いです)

Aベストアンサー

高校生の方ですか?自然対数はlnで表現した方が自分は好きですが、見たことがないと思うのでlogを自然対数とします。
 まず、底の条件より
          x>0
で、このときy=x^xの両辺の自然対数をとります。
   logy=log(x^x)⇔logy=xlogx (∵対数の性質)
 次にこの式の両辺をxで微分します。
      y'/y=1*logx+x*(1/x)
⇔y'=y(logx+1)
⇔y'=x^x(logx+1) (∵y=x^xを代入)
この両辺の自然対数をとってから微分する解き方を
         「対数微分法」
といいます。ちょっと複雑な分数式やこのような普通には微分できない関数に有効です。
       

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です


人気Q&Aランキング