垂直抗力って、質量×重力加速度ですよね?

そうすると、百グラムの物体にかかる、垂直抗力って、980グラム重ですか?

このQ&Aに関連する最新のQ&A

A 回答 (4件)

垂直抗力は面に垂直に働く力です。


物体が面に接触して存在していれば必ず働いています。
物体に重力しか働いていなければどんどん落下し続けるはずだからです。
この力は物体に働いているいくつかの力の中の一つです。
物体が静止していれば働いている力をすべて合わせたもの(合力)がゼロです。
これは釣り合いです。作用・反作用ではありません。

他にどういう力が働いているかによってどのようにでも変化します。
物体のおかれている条件によっても変わります。
斜面に置かれていれば水平な床の上に置かれている場合とは変わってきます。
運動状態によっても変わります。

物体が水平な床の上にあって重力以外の力が働いていない時には垂直抗力の大きさは重力に等しいです。
この物体にひもをつけて上向きに力を加えたとします。
ある力のところで床から離れますがそれまでは垂直抗力が存在します。
垂直抗力とひもに加えた力の和が重力に等しいという関係です。
これも釣り合いから出てくることです。

床の上に置いてある台秤の上に物体を置いた時に、秤から物体に働く力は
床の上に物体を置いた時に、床から物体に働く垂直抗力と同じです。
その力によって物体が釣り合っているのですから同じです。
台秤からの抗力は台秤の中のばねの変形によって出てきます。
床からの抗力は床の変形によって出てきます。
床が少したわむのです。

垂直抗力の大きさは秤の目盛を見れば分かります。
物体を載せた台秤をエレベータに持ち込んで目盛の値がどのように変わるかを見てください。
エレベータの動きによっては物体の目方よりも大きくなる時も小さくなる時もあるはずです。
    • good
    • 6
この回答へのお礼

ありがとうございます。

お礼日時:2010/09/24 07:12

100グラムの物体にかかる重力


= 100グラム重(あるいは 100重量グラム;980グラム重ではありません)
= 0.1キログラム重(あるいは 0.1重量キログラム)
≒ 0.98ニュートン(980Nではありません)

その物体が水平面と角θをなす面に置かれており、他に力が働いていないのであれば、その面からの垂直抗力の大きさは上の値の cosθ 倍です。
    • good
    • 3
この回答へのお礼

ありがとうございます。

お礼日時:2010/09/24 07:13

垂直抗力の説明はNo.1さんのでいいのですが、


計算の単位がおかしいです。
100gにかかる重力は100g重です。
単位をN(ニュートン)で書くならば980Nです。
    • good
    • 2
この回答へのお礼

ありがとうございます。

お礼日時:2010/09/24 07:13

それは向きによる、としか言えないですね。


垂直抗力というのは、その名の通り垂直にかかる抗力です。この場合の垂直とは2つの物体が接している面に対して垂直な方向ということです。
そして、抗力は作用・反作用に当たる力で、要は壁を押したら壁から押し返されるような力です。
ということは、
百グラムの物体にかかる重力は980グラム重で、もし地面に水平な向きに面にその物体を置いた時は垂直抗力は980グラム重ですが、面が地面に対して傾いていた時(重力のかかる向きに垂直でない面の時)垂直抗力は980グラム重より小さくなります。

以上、参考になれば幸いです。
    • good
    • 0
この回答へのお礼

ありがとうございます。

お礼日時:2010/09/24 07:12

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q斜面を転がる物体の加速度aについて 斜面を転がる物体は質量mに関係なく、重力加速度g=9.81(m/

斜面を転がる物体の加速度aについて

斜面を転がる物体は質量mに関係なく、重力加速度g=9.81(m/s^2) と斜面の角度θによって決まる。
って事ですが、

自由落下の加速度も質量mに関係なく自由落下の加速度gは一定。

ですが実際に高い位置から、重い物と軽いもを落とすと、重い方が落ちます、それは実際には空気抵抗などが関係してるため。と聞いたことがあります。

だったら実際に斜面を重い物と軽い物を転がすとすると、
実際は摩擦力と空気抵抗の関係で重いものが速く転がって、軽いものは遅く転がるのでしょうか?

摩擦力や空気抵抗を考慮して加速度を計算した場合、実際に近い加速度がわかると言うことでしょうか?

もしそうなら、空気抵抗の計算は良くわからないので、摩擦力だけを考慮したらどういった加速度の計算式になるのか教えて下さい。

Aベストアンサー

まず、誤解があるようです。
重い物体の方が軽い物体より速く落ちるわけではありません。
空気抵抗の大きさによっては、軽い物体の方が速く落ちます。
多分、「重い物体」を鉄の玉、「軽い物体」を羽毛や紙、とした説明を聞いたのだと思います。
この場合は、羽毛や紙の方が、空気抵抗の影響を大きく受けますので、したがって、ゆっくり落ちます。
でも、「重い物体」でも空気抵抗の影響が大きい形状をしているならば、必ずしも速く落ちるとは言えません・・・まあ、羽毛や紙よりかは速く落ちるでしょうけれど(^^;)
それから、斜面の場合でも一概には言えません。
全く摩擦の無い斜面ですと、物体は加速g・sinθ (θは斜面の傾き角)で滑り降りますが、
摩擦がある場合、物体と斜面の間で滑りが起こる場合と起こらない場合で加速度が異なってきます
  滑りが無い場合:加速度 (2/3)g・sinθ ただし、物体の形状が球のとき
  滑りがある場合:加速度 g(sinθ ー μcosθ) μ:動作摩擦係数 μの値は、物体と斜面の材質で決まります。
そんなわけで、重い物が速く転がって、軽い物が遅く転がるとは言えません。
例えば、斜面との摩擦が大きいゴム製の直方体と摩擦の小さい紙で作った同じ大きさの直方体
を斜面上において、同時に手を離したとします。
ゴム製の直方体は摩擦が大きくて、斜面上で静止し、
紙製の直方体はスーッと斜面上を滑り落ちていく、なんて事もあります。
確かに、斜面の実験で重力加速度を求めることは可能ですが、実験上の様々な事柄を考慮しないと、求めることはできません。

まず、誤解があるようです。
重い物体の方が軽い物体より速く落ちるわけではありません。
空気抵抗の大きさによっては、軽い物体の方が速く落ちます。
多分、「重い物体」を鉄の玉、「軽い物体」を羽毛や紙、とした説明を聞いたのだと思います。
この場合は、羽毛や紙の方が、空気抵抗の影響を大きく受けますので、したがって、ゆっくり落ちます。
でも、「重い物体」でも空気抵抗の影響が大きい形状をしているならば、必ずしも速く落ちるとは言えません・・・まあ、羽毛や紙よりかは速く落ちるでしょうけれど(^^;...続きを読む

Q重力波は非常に大きな質量を持つ物体が加速度運動することで発生すると聞いたのですが、実際に検出されてい

重力波は非常に大きな質量を持つ物体が加速度運動することで発生すると聞いたのですが、実際に検出されている重力波は太陽数個分のエネルギーを持っているそうですね。
そこで思ったのですが、たとえ微量な質量の物体であっても、すこし運動してくれれば微量の重力波を放出してくれるのでしょうか?
観測されるほどの重力波のみ膨大なエネルギーを必要とするのでしょうか?

Aベストアンサー

御参考まで。

http://natgeo.nikkeibp.co.jp/atcl/news/16/021200053/

Q物理 力学電車が水平なレールの上を加速度αで走り出した。電車の床の上で静止していた質量Mの物体が

物理 力学

電車が水平なレールの上を加速度αで走り出した。電車の床の上で静止していた質量Mの物体が電車が走り出すと同時に床上を滑り始めた。物体と床の間の動摩擦係数μ、重力加速度g。

問、車内の人がみて物体が床をl(m)滑るのに要した時間をtとその時の速さv(車内の人が見た速さ)を求めよ。

解答、等加速度運動より

x=vo×t+1/2at2乗 の公式を使うのですが、なぜ初速(vo)がゼロなのですか?

Aベストアンサー

「初速」とは、「最初の速度、走り始めの速度、加速度が働く前の速度」で、ここでは「時刻 t=0 のときの速度」です。

 「x=vo×t+1/2at2乗 の公式を使う」ということですが、この式から、速度は

   v = v0 * a*t

となり、この式から「時刻 t=0 のときの速度」は「v = v0 」になります。

 ここで、「v = v0 」とは何かを考えましょう。「電車が、速さ v0 で動いている」ということです。
 でも、最初、電車は止まっていて、時刻 t=0 から「加速度 a で走り出した」のですよね? 時刻 t=0 のときに走り出したので、時刻 t=0 の前、そして時刻 t=0 の瞬間には「 v = 0 」だった、ということです。
 従って、 t=0 のとき、

   v = v0 = 0

であり、従って

   v = a*t
   x = (1/2) * a * t^2

ということです。


 この出発点でつまづいて、無事問題は解けたのですか?
 そちらの方が心配です。

Q垂直抗力の仕事

垂直抗力は仕事しない(N・dx=0、N,xはベクトル)とありました。
球体が受ける垂直抗力は、作用反作用の関係で、台にも働きます。
その垂直抗力の仕事を考えると、球体の方は0になります。
しかし、Nと台の移動dXは直角でないため、台の方は0になりません。

この2つの物体は、本当に力学的に保存するのでしょうか?
確かに内力として打ち消せます(参考書にそう書いてある)が、個別に考えた時に打ち消せません。

Aベストアンサー

作用と反作用のする仕事は一致しません。

例えば、重力による落下を考えましょう。
物体に働く重力の反作用は物体が地球に及ぼす万有引力です。
この二つの力の大きさは等しく、向きは逆です。

ではそれぞれの動きはどうでしょうか。
物体が1m落下する際、地球はほとんど動きません。(自転・公転は無視する)
実際には物体に近づくように動いているのですが、その移動量はとてつもなく小さく(原子1個分も動きません)測定自体不可能です。
それぞれの力のする仕事の大きさは、力の大きさ×移動距離、であらわされますが、同じ力の大きさであるが移動距離がぜんぜん違うため仕事の大きさもまったく異なります。


とあるちからのしている仕事の大きさは観測している系に依存します。
例えば次のような状態を考えましょう。

机の上に物体がおいてあり、その物体を1Nの力で横に引張ります。ただ、摩擦力が働きこの物体は動きません。
ではこの摩擦力が1秒間にしている仕事の大きさはいくらでしょうか。

この問題に対してこれだけで正解を出すことは実はできません。
なぜなら、観察者がどのような系にいるかまったくいっていないからです。
机に対して静止している系の人から見れば摩擦はまったく仕事をしていません。
ですが、例えば横に引張っている力と同じ向きに等速度で動いている人から見ると動でしょうか。1m/sで動いている人から見て、1秒間に物体は1m、摩擦と同じ向きに動いています。
ですので摩擦は
1N×1m=1J
だけ1秒間に仕事をしているのです!!
物体の速度が変化していないのだから仕事は"0"ではないか、と思うかもしれません。
これは、物体を引張っている力の仕事が-1Jであり打ち消しあっているため物体のエネルギーが変化しないのです。


では上記のことをもとに質問にお答えします。
>垂直抗力は仕事しない(N・dx=0、N,xはベクトル)とありました。
球体が受ける垂直抗力は、作用反作用の関係で、台にも働きます。
その垂直抗力の仕事を考えると、球体の方は0になります。
しかし、Nと台の移動dXは直角でないため、台の方は0になりません。

別に台に働く力の仕事が"0"にならなくても問題ありません。
球体になされる仕事が"0"であっても問題ないのです。
あと、垂直抗力の仕事が"0"というのも問題です。垂直抗力のする仕事が0になるのは動く向きと力の向きが常に垂直な場合に限られます。
台が動くような場合、垂直抗力が仕事をすることがあります。もちろん、台が静止している系から見ると常に垂直抗力のする仕事は"0"です。

あと、
>しかし、Nと台の移動dXは直角でないため、台の方は0になりません。
といっていますが、これは注意が必要です。
保存、などのことを考える場合、常に観測する系は固定していなくてはなりません。
物体を考える場合は台を固定し、台を考える場合は物体を固定する、ということはしてはいけません。
一方で台を固定するなら、もう一方を考える場合でも台を固定して考えないといけないのです。相対運動で考えてはいけないのです。

作用と反作用のする仕事は一致しません。

例えば、重力による落下を考えましょう。
物体に働く重力の反作用は物体が地球に及ぼす万有引力です。
この二つの力の大きさは等しく、向きは逆です。

ではそれぞれの動きはどうでしょうか。
物体が1m落下する際、地球はほとんど動きません。(自転・公転は無視する)
実際には物体に近づくように動いているのですが、その移動量はとてつもなく小さく(原子1個分も動きません)測定自体不可能です。
それぞれの力のする仕事の大きさは、力の大きさ×移動距離、であらわされま...続きを読む

Q高校物理:垂直抗力の作用点が移動するということ

添付の図の状態で、板の質量はmです。右端にかかる力Fを少しずつ強めていくと、板が傾き始めます。その時のFを求める問題なのですが、垂直抗力Nの作用点の位置が理解できません。

この問題には前半部があって、Fを強めていく前、静止している状態でのNの作用点のAからの距離は、正解できました。つり合いの式とAのまわりのモーメントのつり合いの式から、求める距離は、
((mg+2F)L)/(2(mg+F))でした。

この結果を使って冒頭の問題を解くのですが、Nの作用点が机の端に来たとき板が傾き始める、と解答に書かれていますが、どういう意味か教えていただけないでしょうか?Fを強めていく前は、机の端よりもA側に作用点があったことは前半の計算結果からわかるのですが、Fを強めていくと、なぜ垂直抗力の作用点が右側に移動していくのですか?

ちなみに、物理のエッセンス(力学)の32番です。

Aベストアンサー

まず、求めた距離(Aからの距離)をxとして
x=((mg+2F)L)/(2(mg+F))
としましょう(^^)
この x が F の変化に対して、どう変わっていくかを調べてみます。
ここで、F に 1,2,3,・・・と代入していくと分かりづらいので、mg の整数倍を代入していきます・・・F=0,mg,2mg,・・・を代入してみるって事です。
このとき、板が傾き始める F は(1/2)mg ですが、x の変化の仕方だけをみたいので、気にせず代入してみます。すると、
F=0 のとき・・・x=L/2
F=mg のとき・・・x=(3/4)L
F=2mg のとき・・・x=(5/6)L
・・・
となってゆき、右側に移動することが分かりますね(^^)
この事を確認した上で、問題と照らし合わせると、
F を大きくしていく → N が右側に移動する → でも、N の位置が x=(2/3)L を越えるはずは無い → したがって、x=(2/3)L のとき板は傾き始める
となります。
また、板が傾き始める時は、板が台から浮き上がった時ですから、垂直抗力は台の端からしか受けませんね。
したがって、x=(2/3)L を代入して F を求めることができます。

類題としては、斜面の上に直方体をのせて、斜面の傾きをゆっくり大きくしていきます。
斜面に直方体をのせたとき、垂直抗力は直方体の底面の中点に加わるわけではなく、力のモーメントの釣り合いから求めなければなりません。
そして、傾きを大きくして、直方体が倒れ始める時は、垂直抗力が直方体の斜面下側の端に加わるときでした。
「物理のエッセンス」に載っているは分かりませんが、興味がありましたら、調べてみて下さいね(^^)

参考になれば幸いです(^^v)

まず、求めた距離(Aからの距離)をxとして
x=((mg+2F)L)/(2(mg+F))
としましょう(^^)
この x が F の変化に対して、どう変わっていくかを調べてみます。
ここで、F に 1,2,3,・・・と代入していくと分かりづらいので、mg の整数倍を代入していきます・・・F=0,mg,2mg,・・・を代入してみるって事です。
このとき、板が傾き始める F は(1/2)mg ですが、x の変化の仕方だけをみたいので、気にせず代入してみます。すると、
F=0 のとき・・・x=L/2
F=mg のとき・・・x=(3/4)L
F=2mg のとき・・・x=(5/6)L
・・・
と...続きを読む


人気Q&Aランキング

おすすめ情報