プロが教えるわが家の防犯対策術!

x^y=y^x (x>y)を満たす整数解は、x=4,y=2以外にありますか?

また、この解の求め方が分る方がいらっしゃったら教えて下さい。

A 回答 (5件)

自然数の範囲で、やってみよう。



xのy乗 = yのx乗 = z が成立しているとする。
z の素因数分解を考えれば、
x と y の素因数は共通であることが解る。
素因数 p の x における指数を a、
y における指数を b と置くと、
p の z における指数から
ay = bx である。
x > y > 0 より、a > b と解る。
これが各 p で成り立つから、
x は y で割り切れる。

x = ky と置く。
x > y より、k > 1 である。
ここで、最初の式に戻ると、
zのy乗根 = kx = yのk乗 が成り立つ。
D(n) = (yのn乗) - ny と置くと、
任意の y に対して D(1) = 0 であるが、
y > 2 のときは、D(n+1) - D(n) = (y-1)(yのn乗) - y
> (yのn乗) - y ≧ 0 だから
n > 1 で D(n) > 0 となる。
従って、D(k) = 0 となる解があるのは、
y ≦ 2 に限られる。

y = 2 の場合を解く際も、
上記の考えをたどって、k = 2 に絞られるから、
(x,y) = (4;2) のみが得られる。

y = 1 を代入すると、x = 1 となって、
x > y より、これは解でない。
    • good
    • 5

話を整数の範囲に広げる。



x または y の一方が負であれば、
|z| < 1 より、他方も負である。
x = -u,
y = -v で置換すると、
uのv乗 = vのu乗 かつ u,v の偶奇は一致
と変形できて、自然数の場合に帰着される。

ここから、No.1 の解が出る。
    • good
    • 2

f(x)=(logx)/xのグラフを描いてみれば、


x=4、y=2以外はないでしょう。
そこで、あえて、整数解ではありませんが、近似解で
x=7.4
y=1.5を見つけてみました。
7.4^1.5=20.1302
1.5^7.4=20.0944
    • good
    • 0

>x^y=y^x (x>y)を満たす整数解 .....



ひとまず、f(x) = x^(1/x) = e^{(1/x)*LN(x)} のグラフでも描いてみてください。
f(x1) = f(x2) を満たす整数解 x1≠x2 は、{2, 4} のペアだけですね。
   
    • good
    • 0

x=-2,y=-4



f(x)=log(x)/x の利用が一般的だと思う。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qy=x^xの導関数は?

y'=x*x^x-1

で結局もとに戻ってしまうのですがそんな
はずは無いと思うんです。

答えのみでよいので教えてください。
(できれば導き方を教えていただければ幸いです)

Aベストアンサー

高校生の方ですか?自然対数はlnで表現した方が自分は好きですが、見たことがないと思うのでlogを自然対数とします。
 まず、底の条件より
          x>0
で、このときy=x^xの両辺の自然対数をとります。
   logy=log(x^x)⇔logy=xlogx (∵対数の性質)
 次にこの式の両辺をxで微分します。
      y'/y=1*logx+x*(1/x)
⇔y'=y(logx+1)
⇔y'=x^x(logx+1) (∵y=x^xを代入)
この両辺の自然対数をとってから微分する解き方を
         「対数微分法」
といいます。ちょっと複雑な分数式やこのような普通には微分できない関数に有効です。
       

Q東大の理1と理2の違いは?

僕は次から高1になるのですが、大学は東大の理系を考えています。
理3が医学部だということは分かっている(し、行く気はない)のですが、
理1と理2の違いがあまりはっきりしません。
学部進学の際、どのように振り分けられるのですか?
できれば具体的な人数なんかのデータがあればいいのですが・・・。

Aベストアンサー

>工学が1、農学が2、理学部ではそんな変わんないって感じでしょうか。

理学部はひとくくりにできませんよ。
物理学科、数学科などは理1優勢ですし、化学科だと同じくらい、生物学科なら少し理2優勢といった感じです。
#2で示した集計表のとおりです。
細かいこと言い出すと、工学、農学も学科によって色合いがかなり異なりますよ。

大まかなことを言えば、#2の文中に示した進学振り分けについての資料にありますが、
理科一類 工学部・理学部・薬学部・農学部
理科二類 農学部・理学部・薬学部・医学部・工学部
↑は、それなりに人数比率も反映した順番になっていて、理1なら工・理が大部分を占めるし、理2なら農・理・薬が大部分を占めます。

ここまでいろいろ書きましたが、どちらかというと、momomoredさんには#2の集計表とにらめっこしてほしくありません。
むしろ、大学側からの「進学のためのガイダンス」(http://www.u-tokyo.ac.jp/stu03/guidance/H16_html/index.html)や、#2の進学振り分けの資料の中の各学部の紹介とか、あるいは、各学部のホームページ(学部ごとにホームページをもっています)を見て、できれば研究室のホームページまでチェックして、具体的に何がやりたいか、そしてそれをやるためには東京大学のあの研究室で学びたいんだ、ということをしっかりと意識することのほうが大切だと思います(それがなかなかできないわけですが…ハイ)。

あくまで#2の集計表とかは参考までにね。#2で書いたように、入ってから行きたくても行けない学部・学科なんてものはほとんどないですから(文転もありですよ)。
目標高く勉強のほうがんばってください。

>工学が1、農学が2、理学部ではそんな変わんないって感じでしょうか。

理学部はひとくくりにできませんよ。
物理学科、数学科などは理1優勢ですし、化学科だと同じくらい、生物学科なら少し理2優勢といった感じです。
#2で示した集計表のとおりです。
細かいこと言い出すと、工学、農学も学科によって色合いがかなり異なりますよ。

大まかなことを言えば、#2の文中に示した進学振り分けについての資料にありますが、
理科一類 工学部・理学部・薬学部・農学部
理科二類 農学部・理学部・薬学部・...続きを読む

Qa^b = b^a 0<a<b を満たす整数の組

y=x^(1/x)(x>0)のグラフを用いて
a^b = b^a 0<a<b を満たす整数の組を求めたいのですが
どのように求めたらいいのでしょうか?

Aベストアンサー

a^(1/a)=b^(1/b)の時 a^b=b^aになります。
x^(1/x)の最大値はx=eのとき最大値e^(1/e)(≒1.44...)
1<y<e^(1/e)を満たすyに対するxが1<x<eとe<xの範囲に一個ずつ存在する。
0<a<bからaは1<x<eを満たす整数で、それに対する整数bはe<xを満たす。
なのでaの候補は2しか存在しない。
a=2なら、a^b=b^a にaを代入してb(>e=2.718 ...)を求めれば良いですね。
2^b=b^2
b=2^(b/2)
これを満たす整数b(3以上)を見つけて下さい(1つしか存在しません)。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qコラッツの予想ははずれました。-

ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。
計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。
最初の数が奇数(X)の場合、3を掛けて1を足すと、X(奇数)×3(必ず奇数)+1=Y(必ず偶数)となります。従って、Yは偶数なので、次の計算は必ず割る2となります。よって、幾ら計算値をどんどん大きくしていこうとしても、X(奇数)×3+1=Y(偶数)→Y(偶数)÷2=Z(奇数)、Z(奇数)×3+1=O(偶数)、O(偶数)÷2=P(奇数)と、奇数→偶数の繰り返し以上には、計算値は大きくなっては行かないことが分かります。つまり、(ある奇数×3+1)÷2の計算結果が、必ず奇数であれば、計算値は無限に大きくなって行き、必ずしも最後は4→2→1の繰り返しとはならないことが証明されます。
 では、その様な始まりの奇数Xがあるか否か、エクセルを使って検証してみましょう。列Aに上の行から順番に、1・3・5・7・9・11・・・・と奇数を入力してください。列Bに上から順に「=(A1×3+1)/2」「=(A2×3+1)/2」「=(A3×3+1)/2」・・・・と、左のA列の奇数を3倍して1を足し2で割る数式を入力します。列Cに上から順に「=(B1×3+1)/2」「=(B2×3+1)/2」「=(B3×3+1)/2」・・・・B列のセルの計算値を、更に3倍して1を足し2で割る数式を入力します。同様の式をD列・E列・F列・・・に入力して行き、どんどん3倍して1を足し2で割る計算を行います。
この結果、全ての列の計算値が奇数となるものがあれば、計算値は無限に大きくなって行きます。そこで、各列において奇数が出現する様子を見てみましょう。B列では、上から2回に1度5・11・17・23・29・35・・と奇数が現れます。C列では、4回に1度17・35・53・71・89・107・125・・・と奇数が現れます。D列では8回に1度53・107・161・215・269・323・・・と奇数が現れます。E列では、16回に1度161・323・485・647・809・・・と奇数が現れます。F列では、32回に1度485・971・1457・1943・2429・2915・・・と奇数が現れます。G列では、64回に1度1457・2915・4373・5831・7289・・・・と奇数が現れます。以後同様に、H列では128回に1度、I列では256回に1度、J列では512回に1度奇数が現れます。
ここまでの計算で、奇数が連続するのは、512行目の1,023・1,535・2,303・3,455・5,183・7,775・11,663・17,495・26,243・39,365の1つです。3倍して1を足し2で割る計算をn回行えば、全ての計算値が奇数になるものは、2のn乗分の1に減少していきます。この事実は、簡単に証明出来るでしょう。
従って、計算を行えば行う程、計算値が奇数の連続になるものは1/2・1/4・1/8・1/16・1/32・・どんどん半分に減少していきます。しかし、無限の数の中では、2のn乗分の1は決して0にはなりません。3倍して1を足し2で割る計算をn回する場合、1から数えて2のn乗番目の奇数(又はその倍数番目の奇数)から始めると、n回の計算結果全てが奇数となります。計算値は大きくなる一方で、4→2→1の繰り返しにはなりません。
有限の数の範囲内では、計算値がその範囲を超えるまで計算を行っていけば、奇数が連続しなくなります。しかし、無限の数の中では、常に先に2のn乗番目の奇数があります。それは(1+2×2のn乗)で表現される数値で、尽きることはありません。そのnを∞にした数値から始めれば、無限に計算を繰り返しても4→2→1の繰り返しにはなりません。
少なくとも1組は、永遠に奇数が連続し数値が大きくなっていく組み合わせが存在します。従って、コラッツの予想は残念ながら誤っています。

ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。
計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。
最初の数が奇数(...続きを読む

Aベストアンサー

なんで別IDで二重投稿するの?


だからあ、∞は数値じゃないだってば。

(∞を数値とした体系もあるらしいけど、コラッツの問題とは別の話だから)

Q酸の強さと酸化力について

酸の強さと酸化力について
塩酸は強酸だが酸化力はないと書いてありました。
つまり、酸の強さと酸化力は関係がないということですよね。

「酸の強さ」とは何によって定まるのかと思い調べたら

「pKaの値が・・・」と出てきましたが、化学Iの理論化学と無機化学が終わった段階なので
これはたぶん習っていません。
何によって酸の強さは決まるのですか?
また、これを習っていない場合、酸の強さは覚えるしかないのでしょうか?
出てくる酸は「塩酸」「硫酸」「硝酸」くらいですが。


酸化力について
これも何によって定まるのかが分かりません。
覚えるものなんでしょうか?

最後に・・・
酸の強さと酸化力について、違いを教えてください。

Aベストアンサー

酸の強さは、水素イオンの濃度の濃さです。pHなどでこれをあらわします。

酸化力とは反応物を酸化させる(電子を奪う)力があるものを表します。
酸化力のある酸というのは、水素イオンと対になっている部分のイオンに酸化力があるものを示します。
たとえば、塩酸であれば塩化物イオンCl-がそれに該当しますが、これは酸化反応を起こしません。(反応時に反応物から電子を奪わない。)なので、塩酸は酸ではある(水に溶かすと水素イオンを出す)が、酸化力はありません。
しかし、硝酸や熱濃硫酸の場合は、硝酸イオンなどが反応物を酸化させる(反応物から電子を奪う)い、なおかつ水溶液中で水素イオンを出すので、酸化力がある酸という表現を使います。

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Qlim[n→∞](1-1/n)^n=1/e について

こんにちは

lim[n→∞](1+1/n)^n=e
が成り立つことは簡単に示せるのですが、
lim[n→∞](1-1/n)^n=1/e
となることの証明はどのようにすればいいのでしょうか?
ご存知の方がいらっしゃいましたらご回答よろしくお願いします。

Aベストアンサー

e=lim(1+t)^(1/t)   〔t→0〕
がeの定義なので、(t→+0でもt→-0でもOK)
-1/n=tとおきます。

n→∞のとき、t→-0なので、
(与式)=lim(1+t)^(-1/t)   〔t→-0〕

これを変形すると、
=lim{(1+t)^(1/t)}^-1   〔t→-0〕
=e^-1
=1/e

高校の範囲なら、この証明で大丈夫です。

Qどうしても東大に入りたい!!そのためには駿台か、河合塾本郷校舎か

私は浪人確定の高校3年生です。私は去年一年間まったく勉強しませんでした。去年の12月のセンター模試で550点しかないのにもかかわらずまだ大丈夫と言って逃げていました。しかしどうしても東大に入りたいと言う情熱、願望、欲求は消えうせることなく、一月に入り勉強しましたが足切りにあい今年東大を受験することができませんでした。今年は他の国立大学に出願し、今は後期に向けて合格を手に入れるためだけに勉強しています。私は二浪は絶対にしないです!来年こそは胴上げされます!!
そのため相談したいことがあります。自分は宅浪は100%できません。(二月それで失敗しました)なので予備校に通うつもりです。駿台か河合塾かで迷ってます。駿台は実績がよいのですが、今年河合塾が本郷に新しく東大専門校舎を作り魅力を感じます。私は現役時代東進ハイスクールに通っいて、予備校のことがよくわからないので、
駿台と河合の良い所悪い所をふまえてどちらがいいか教えてください。

Aベストアンサー

...。
実績云々ってどういうことだか解ってないようですね。
まず受かりそうな生徒が集まっているってことです。
受かりそうにない人まで受かりました、という実績が、じゃぁどこに書いてありましたか?
あなたが見なければいけないのはそういう実績でしょ?
受かりそうな人が受かった話がいくらあってもあなたには関係ありません。違いますか?

> 去年一年間まったく勉強しませんでした。

去年だけですか?
去年だけサボったのなら、センター8割軽く超して、二次でだめだった、ということになるはずですが。
東大に行きたい人が6年間勉強を積み上げるのは極普通のことです。
どうして一年間だけの話に矮小化するのでしょうか?
誤魔化してませんか?それが失敗の元だったのではありませんか?

予備校がどうこうではありません。
現に東進に行っていてセンターがそれだけだったんでしょう。
東進が悪いからセンターの点が取れなかったんですか?それとも自分がサボったからですか?

まず実力相応のクラスに入り、そこで基礎・教科書レベルからやり直すべきです。
講義に合わせていたのでは順当にしか伸びませんから東大には届かないでしょう。
講義以上に自分でバリバリ問題集などをやっていかないと。
東大クラスなんてとんでもないですよ。
そんな難しすぎる講義はついて行けないのではないですか?
前期は基礎をやる、とは言いますが、東大の基礎と日大の基礎は違います。

基本的に、自力でやっていけない奴は伸びません。
勉強を嫌々やっているようなら、よく頑張ってMARCHだと思います。
勉強が苦行だったり、学習内容に興味を持てなかったり、勉強が面白くなかったりするようなら、勉強時間は減るだけですので、そういう人は浪人には向きませんし、おそらく大して伸びません。
また、基礎が抜けているのにそこをやり直さず、難しいことばかりやっていればよいのだろう、という人も伸びません。
勉強は下から積み上げていく物です。難しいことばかりやればどうにかなるわけではありません。
それは病み上がりで走れない人がサッカーをやろうとするような物で。まず走れないと。
仮に難しいことができたとしても、センターで点が取れないはずです。

もっと地に足のついたことを考えましょう。
下からやり直すのであれば、河合の普通の校舎をお薦めしておきます。
どうしても自力でできないようなら、24時間監視体制付きのような全寮制の予備校に行くことをお勧めします。

...。
実績云々ってどういうことだか解ってないようですね。
まず受かりそうな生徒が集まっているってことです。
受かりそうにない人まで受かりました、という実績が、じゃぁどこに書いてありましたか?
あなたが見なければいけないのはそういう実績でしょ?
受かりそうな人が受かった話がいくらあってもあなたには関係ありません。違いますか?

> 去年一年間まったく勉強しませんでした。

去年だけですか?
去年だけサボったのなら、センター8割軽く超して、二次でだめだった、ということになるは...続きを読む

Q集積点が、まったく分かりません!!

集積点の意味がまったくわかりません。詳しく教えてください。

Aベストアンサー

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるようなx以外のAの要素が存在するような点」
と言い替えられます。

直観的な言い方をすれば、x∈XがAの集積点であるとは
「xのどんな近くにも(x以外の)Aの点がある」
と言う条件をみたすような点のことです。

ついでに集積点との対比で孤立点も覚えてしまいましょう。
集積点とはある意味で対照的なものが孤立点です。
すなわちx∈XがAの孤立点であるとは
xがAの要素であり  …(S1)
かつxのある近傍とAの共通部分にx以外のAの点が含まれない。…(S2)
ような点のことです。
Xが距離空間なら、これは
「あるεに対してxからの距離がε以下であるようなAの要素はxだけであるような点」
となります。

注意していただきたいのはx∈AであることはxがAの集積点であるためには
必要でも十分でもないということです。
xがAの点であってもそれが孤立点ならxは集積点ではないし、Aの点でないような
Aの集積点も存在します。
しかし孤立点と言う概念は集合Aの要素に対して与えられる概念ですから、Aに
属さない点が(S2)の条件だけ満たしてもそれをAの孤立点とは呼びません。

あとは距離空間(ユークリッド空間)での簡単な例を挙げておきますのでイメージをつかんで下さい

例(1)Xを2次元ユークリッド空間として
A={(x,y)∈X| x^2 + y^2 < 1} ∪ (2.0)
とします。つまりAは原点中心半径1の開円盤と点(2,0)の和集合です。
するとAの集積点(の集合)は
{(x,y)∈X| x^2 + y^2 ≦ 1}
すなわち原点中心半径1の開円盤とその境界となります。
点(2,0)は孤立点なので集積点ではありません。

例(2)Xを2次元ユークリッド空間として
A={(x,y)∈X| y = sin(1/x) ,x∈(0,∞) }
とします。Aの集積点(の集合)はA自身と集合
B={(0,y)∈X| y∈[-1,1] }
の和集合です。

例(3)Xを1次元ユークリッド空間として
A= { 1/n | n=1,2,…}
とします。原点{0}はAの集積点です。しかしA自身の点はすべて孤立点です。

例(4)Xを1次元ユークリッド空間として
Aは開区間(0,1)の有理点。すなわち
A= { x∈(0,1)|xは有理数 }
とします。Aの集積点(の集合)は閉区間[0,1]です。

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるよう...続きを読む


人気Q&Aランキング