x軸方向に長径がa、y軸方向に短径がbの楕円を描きます。・・・・(1)
この楕円を、x軸方向にcだけ(ただし、0<c<aとする。)、y軸方向にbだけ平行複写した楕円を描きます。・・・・(2)
(1)と(2)の交点P1、P2を求めたいです。
それぞれの楕円は次の式で表されると思います。
x*x/a/a + y*y/b/b=1 ・・・・(1)
(x-c)*(x-c)/a/a + (y-b)*(y-b)/b/b=1 ・・・・(2)
両式にa*a*b*bを掛け、差を取ると次のようになります。
b*c*(-2*x+c)+a*a*(-2*y+b)=0
これをxについて解くと
x=a*a*(-2*y+b*(1+c^2))/2b/c・・・・(3)
となります。
(3)を(1)に代入して整理すると
4*(a*a+c*c)*y*y -4*a*a*b*(1+c*c)*y +b*b*(a*a*(1+c*c)*(1+c*c)-4*c*c)=0・・・・(4)
---------- ================ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
となります。
(4)のうち、---部をA、===部をB、^^^部をC とすると、解の公式より
y=(-B±√(B*B-4*A*C)/2/A
で解けると思いました。
ためしにa=50, b=30, c=10として計算してみたところ、
√の中が
マイナスとなってしまいます。
つまり、解なし、ということらしいです。
どうやったら交点が求まるのでしょうか。
教えてください。よろしくお願いします。
No.2
- 回答日時:
その解法で計算ミスをしないのは
難行です。
平行移動したほうの楕円を
三角関数を使って媒介変数表示し、
もとの楕円の式に代入するとよい
ように思います。
alice_44さま
ありがとうございます。
さて、媒介変数を使うとのことですが、
sinθとcosθのことでしょうか。
よくわかりません。もう少し詳しく教えてください。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
楕円の書き方
-
噴水はなぜ放物線をえがくので...
-
2:1正楕円とは何ですか?
-
数学における「一般に」とは何...
-
数3 放物線 y^2=4pxという式を...
-
数学 不等式の表す領域
-
双曲線の焦点を求める時はなぜ√...
-
二次関数の問題です。放物線がx...
-
放物線y=2x² を平行移動した曲...
-
この問題は「円の中心の軌跡を...
-
【 数I 2次関数の対称移動 】 ...
-
楕円の焦点,中心を作図で求め...
-
数学の二次関数について質問で...
-
焦点のx座標が3、準線が直線x=5...
-
高一 二次関数 Q,二次方程式x^2...
-
【 数I 2次関数 】 問題 放物線...
-
tの値が変化するとき、放物線y=...
-
mathematicaの軸の太さの変更に...
-
高1数学 二次方程式の問題です
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の焦点,中心を作図で求め...
-
【至急】困ってます! 【1】1、...
-
放物線y=2x² を平行移動した曲...
-
2:1正楕円とは何ですか?
-
数学 不等式の表す領域
-
2つの楕円の交点の求め方が分...
-
双曲線の焦点を求める時はなぜ√...
-
添付画像の放物線はどんな式で...
-
tの値が変化するとき、放物線y=...
-
軌跡の「逆に」の必要性につい...
-
数学の問題です。教えてくださ...
-
楕円の書き方
-
【 数I 2次関数 】 問題 放物線...
-
放物線の対称移動の問題の答え...
-
X軸に関して対称といえる理由を...
-
噴水はなぜ放物線をえがくので...
-
この問題は「円の中心の軌跡を...
-
放物線z= x^2 + y^2上の点(1,2,...
おすすめ情報