
問題 a は定数とする。方程式 ax =2logx + log3 の実数解の個数について調べよ。
ただし、lim(x → ∞) (logx)/x = 0 を用いてもよい。
真数条件より、x > 0 であるから、与えられた方程式は (2logx + log3)/x = a と同値。
f(x) = (2logx + log3)/x とすると、f ' (x) = (2-log3x^2)/ x^2
f(x) =0 とすると、x >0 であるから、log3x^2 = 2 より、 3x^2 = e^2, x = e/ √3
x > 0 における増減は、 0 < x < e/√3 のとき、f ' (x) > 0 , f(x)は 増加、
x = e/√3のとき、 f ' (x) = 0, f(x)= 極大値 2√3/e
e/√3 < x のとき f ' (x) < 0、f(x) は減少
また、lim (x→+0) = -∞, lim (x→∞) f(x) = 0
よって、グラフと直線y= a の共有点の個数から、実数解の個数は
2√3/e < a のとき 0 個
a ≦ 0 a = 2√3/e のとき 1 個
0 < a < 2√3/e のとき 2 個
※ ここで質問なのですが、上記のlim (x→∞) f(x) = 0 というのは、ロビタルの定理 lim (x→∞) logx /x = 0 より導くことができるのがわかります。 すなわち、f(x) はxが増えるにつれて、0に向かって収束するということですよね。
では、lim (x→+0) = -∞はこのグラフにおいてどういう意味なのでしょうか。
x→+0 というのは マイナス側から x=0 に近づけるということは分かるのですが、このグラフは真数条件の x >0 の範囲内にあてはまる、すなわち、このグラフのマイナス側は存在しないと思ったのですが。。。
詳しい方教えてください。
お願いします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 極限が無理数とか有理数になる 5 2023/02/19 04:07
- 数学 ①lim x→∞で1/xだった場合は発散しないため限りなく0に近い解が求められるのでしょうか? 例え 7 2022/05/16 19:27
- 数学 接線の本数を求めたいときの与式の微分について FG例題206 f(x)=xe^-x とするとき、 実 4 2023/07/24 15:43
- 数学 微分の意味ついて質問が有ります 4 2023/04/05 23:17
- 数学 数学Ⅲの関数の極限、関数の連続・不連続に関しての質問でございます。 問題集には、次の関数の〔 〕内の 5 2022/05/19 10:43
- 数学 微分可能 連続 わからない 3 2022/06/22 17:22
- 数学 高校数学で質問があります。 2 2023/02/13 16:40
- 数学 f'(x)=g'(x)+2xsin(1/x)-cos(1/x) (x≠0) =g'(0) 2番は f 4 2023/04/19 00:47
- 数学 2階微分で、②に①を代入する式がわかりません。 例えばf'(x + h)はどういった過程で f(x 2 2022/07/25 15:18
- 数学 関数列の収束について 次の問題を教えて欲しいです。 区間[0,1) の関数列fnと関数f(x)につい 1 2022/06/01 08:33
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
微分について
-
一般的にこれは成り立つのでし...
-
数学の f(f(x))とはどういう意...
-
関数方程式 未知関数
-
数学にでてくるf(x)とかいうの...
-
大学への数学(東京出版)に書...
-
定積分と図形の面積
-
a^8+a^6+5a^4+4a^2+4の因数分解
-
積分する前のインテグラルの中...
-
導関数と微文法
-
微分の公式の導き方
-
微分
-
「次の関数が全ての点で微分可...
-
極限操作は不等号関係を保存し...
-
f(x)=xe^-2xの極大値
-
関数の極限
-
左上図、左下図、右上図、右下...
-
【数3 式と曲線】 F(x、y)=0と...
-
線形2階微分方程式と非線形2...
-
差分表現とは何でしょうか? 問...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報