
課題の提出日が迫っているのでお願いします。
ソフトマターの問題で、マクスウェル模型とフォークとモデルについてです
1.マクスウェル模型は、粘弾性流体に関するもっとも簡単なモデルの一つであり、粘性を表すダッシュポットと弾性的なばねを直列に並べたものであるばねの力学応答はフックの法則(弾性率E)で与えられ、ダッシュポットは粘性率ηのニュートン流体で記述できるとすると、マクスウェル模型は、
dε/dt=1/E・dσ/dt+σ/η
と表される。クリープ・コンプライアンス測定では応力は一定であるが、この時の変形の時間依存性を求めて図示せよ。さらに、応力緩和測定では変形が一定であるが、この時の応力の時間依存性も求めて図示せよ。ここで、緩和時間τ₀=η/Eを導入し、これは定数と仮定してよい。
2.フォークトモデルはバネとダッシュポトを並列につなげたものである。1の問題と同様に、クリープ・コンプライアンス測定における変形と応力緩和測定における応力を求めよ。
No.1ベストアンサー
- 回答日時:
歪ε、応力σ、バネの弾性率E、ダッシュポットの粘性ηとし、
それぞれの歪と応力を添え字f、dで表すと。
バネの応力 σf =Eεf
ダッシュポットの応力 σd=ηdεd/dt
Maxwellモデル
合わせた変形εは ε=εf +εd 、応力σは σ=σf=σd
変形の式を時間tで微分すると
dε/dt=dεf/dt + dεd/dt
したがって
dε/dt=(dσf/dt)/E +σd/η = (dσ/dt)/E +σ/η (1)
Voigtモデル
合わせた応力σは σ=σf +σd 、歪εは ε=εf=εd
したがって
σ= Eεf +ηdεd/dt = Eε+ηdε/dt (2)
Maxwellモデル
a) 応力一定σ=σo、クリープ現象。
(1)式は dε/dt =σo/η
これを積分すれば、Cを積分定数として。
ε(t)=(σo/η) t+ C
εo=ε(0) = C で、σf =Eεf からσo=Eεoとなり
εo = σo /E
ε(t)= σo/E +(σo/η)t
バネの瞬間伸び+ダッシュポットの時間に比例した直線的な伸びの和。
b) 歪一定ε=εo、応力緩和現象。
(1)式は dσ/dt = -σE/η
dσ/σ = -dt/τ τ=η/E
これを積分すれば、Cを積分定数として。
lnσ=-τt+ C
σ(t) = C’*exp(-t/τ)
σo= σ(0) = C’ より
σ(t) = σo*exp(-t/τ)
最初σoの応力が指数的に減少し、t=τ(緩和時間)後にはσo*1/eまで
減少する。
Voigtモデル
a)応力一定σ=σo、クリープ現象。
(2)式は σo = Eε+ηdε/dt
この微分方程式の解は、積分定数をCとして
ε(t) = exp(-t/τ)((σo/η)∫exp(t/τ)dt + C)
= σo/E + C*exp(-t/τ)
t=0で歪は0であるから
0 = σo/E + C つまり C = -σo/E
ε(t) = σo/E (1 - exp(-t/τ))
最初0の歪は徐々に増加し、σo/Eで頭打ちになる。
b)歪一定ε=εo
(2)式は dε/dt = 0 より
σ(t)= Eεo
となり、バネだけの場合と同じになる(形式的には)。
(実際には、瞬時に変形を与えることはできない。σd=ηdε/dt→∞となる。)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 磁性体に関する熱力学の問題が分かりません 1 2023/07/18 03:23
- Access(アクセス) Accessテーブルの結合で別々のテーブルのフィールドを組み合わせて値を出す方法について 2 2022/07/20 19:43
- 発達障害・ダウン症・自閉症 中学の時にIQ82の境界知能と診断されました。 今の私も、やはり境界知能でしょうか? そしてこれは、 3 2023/02/19 00:37
- 工学 半導体 光減衰法による少数キャリアのライフタイム測定で周波数を変えたときの検出波形(縦軸出力電圧、横 1 2023/05/16 19:15
- その他(応用科学) スプリング(ばね)の問題です。教えてくださいますか? 1 2022/06/09 16:39
- 物理学 材料力学の問題です。2問あります。 解き方を教えていただきたいです。 (1)長さl,底面の半径をrの 1 2022/06/09 23:54
- 工学 制御工学の問題について 1 2022/10/07 20:25
- 物理学 物理の問題 3 2022/12/21 22:56
- 数学 実数同士の全単射写像について 2 2023/07/05 17:12
- 物理学 アインシュタインの質量とエネルギーの等価性(E=mc²)って間違ってますよね? 4 2023/01/14 13:29
このQ&Aを見た人はこんなQ&Aも見ています
-
ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
高校生はアルバイトするべきだろうか?
-
【お題】動物のキャッチフレーズ
【お題】「百獣の王 ライオン」「実は動物界最強 カバ」は分かるけど、それはちょっとピンと来ないなと思った動物のキャッチフレーズ
-
限定しりとり
文字数6文字以上の単語でしりとりしましょう
-
スタッフと宿泊客が全員斜め上を行くホテルのレビュー
スタッフも宿泊客も、一流を通り越して全員斜め上なホテルのレビューにありがちな内容を教えて下さい
-
あなたが好きな本屋さんを教えてください
どのくらいの規模間で、どのような本が並んでいるか、どのような雰囲気なのかなどなど...
-
静的粘弾性について
その他(教育・科学・学問)
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・昔のあなたへのアドバイス
- ・字面がカッコいい英単語
- ・許せない心理テスト
- ・歩いた自慢大会
- ・「I love you」 をかっこよく翻訳してみてください
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・はじめての旅行はどこに行きましたか?
- ・準・究極の選択
- ・この人頭いいなと思ったエピソード
- ・「それ、メッセージ花火でわざわざ伝えること?」
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・【お題】甲子園での思い出の残し方
- ・【お題】動物のキャッチフレーズ
- ・人生で一番思い出に残ってる靴
- ・これ何て呼びますか Part2
- ・スタッフと宿泊客が全員斜め上を行くホテルのレビュー
- ・あなたが好きな本屋さんを教えてください
- ・かっこよく答えてください!!
- ・一回も披露したことのない豆知識
- ・ショボ短歌会
- ・いちばん失敗した人決定戦
- ・性格悪い人が優勝
- ・最速怪談選手権
- ・限定しりとり
- ・性格いい人が優勝
- ・これ何て呼びますか
- ・チョコミントアイス
- ・単二電池
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・ゴリラ向け動画サイト「ウホウホ動画」にありがちなこと
- ・泣きながら食べたご飯の思い出
- ・一番好きなみそ汁の具材は?
- ・人生で一番お金がなかったとき
- ・カラオケの鉄板ソング
- ・自分用のお土産
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
ゴムの静的せん断弾性率とは?
-
3点集中荷重の最大曲げ応力の計...
-
真空容器の強度計算方法を教え...
-
銅の応力‐ひずみ線図
-
応力と凸凹
-
材料のネッキングは何故おこる?
-
法線応力差についてわかる方い...
-
『構造粘性』とは何でしょうか...
-
0.2%耐力とは?(弾性係数,応力...
-
降伏点が明確でない場合の降伏...
-
吊り具の強度計算について教え...
-
応力勾配とはどう言う意味ですか?
-
木材の曲げ弾性率と曲げ強度に...
-
段付き棒(梁)の曲げについて
-
引張強度と圧力について教えて...
-
ミーゼス相当ひずみについて
-
樹脂材料の曲げ弾性率について
-
内圧と外圧の評価について
-
薄肉円筒の耐圧計算に関して
-
引っ張り変形におけるくびれの...
おすすめ情報