
数学の素人なのですが、ある事情で集合論を勉強しようと思って、本を手にとってみたところ
∃x∀y[y∉x]
という数学記号で作られた文章みたいなものが出てきました。
これはどう読めばいいのでしょうか??
自分なりに解釈し、直訳したところ
”全てのyに対して、yがxに含まれないxが存在する”
みたいな感じなのですが、文章的にも意味が通ってない気がします。。
これの正しい読み方はなんなのでしょうか?
それとこういう書き方はなんと言うのでしょうか?
後、こう言う数学記号?の読み方が学べる本やサイトなどがあれば教えていただきたいです!
よろしくお願いします。
No.6ベストアンサー
- 回答日時:
命題1:∃x∀y[x>y] は「あるxがあって、すべてのyにたいして、x>yをみたす。
」あるxがあって、ですから例えばx=10000としてみます、すべてのyにたいして、10000>y は成立しません。
じゃあ、もうチョイ増やして、x=100000000としてみます、すべてのyにたいして、100000000>y は成立しません。
∃xですから1個でも見つかればよいのですが、どんなxを選んでも、すべてのyの中にはx以上のものがあるので、成立しません。よって、この命題は偽となります。
命題2:∀y∃x[x>y] は「すべてのyに対して、あるxが存在し、x>yをみたす。」
すべてのyにたいしてですから、まずy=0で成立するか考えて見ます。x=1なら、1>0 が成立します。
続いてy=1で成立するか考えて見ます。x=2とすれば、2>1 が成立します。
yをどんどん大きく場合でも、yが実数ならy+1も実数であるから、xにy+1となるxを選べば、x>y が成立します。
yが負のときは、x=0を選んでおけば、x>y が成立します。
なので、すべてのyにたいして、あるx(をうまく選ぶことができ)が存在し、x>y を成立させることができます。 よってこの命題は真
回答ありがとうございます。
分かりやすく解説して頂き、ありがとうございます。
つまり、
命題1は、総てのyに対して絶対的なx>yのxが存在する。つまりxは定数みたいに決まったxが存在する。
でも、そんなxは存在しないから偽。
命題2は、総てのyに対して相対的なx>yのxが存在する。つまりもしy、x∈Zならば、任意のyに対してy+1は存在するので、
y+1=xとすれば、x>yが必ず成立するため真。
ということでしょうか。
記号をちょっと入れ替えるだけで、意味が全然違うとは、、、勉強になります。
No.7
- 回答日時:
>”全てのyに対して、yがxに含まれないxが存在する”
一応あってはいますが誤解を招きそう。
∃xP(x) は Pを真にする x が存在する。
∀yQ(x, y) は全てのyでQが真になる。
なので、全てのyでQが真になる x が存在する
といってしまうと、「全てのyで」がどこまでにかかるかが不明瞭。
適当な x が存在し、そのxでは全てのyでQが真になる
がよいかも。
#言葉だと不明瞭なので記号化するのですけどね
回答ありがとうございます。
本当ですね!
言葉で説明すると、文字数も多いし情報量が多いと思いきや分かりやすくなるどころか色んな意味に取れてしまい、不明確になってしまいました。
数学書で何故こんな難しい書き方をするのかと疑問だったのですが、そういう事だったんですね。
勉強になります。
No.5
- 回答日時:
読み方はおいといて、書き方が間違っています。
(カンマの位置が間違っています。)∃x∀y[y∉x] これを ”全てのyに対してyがxに含まれないxが存在する。” こう読みたいならば、
「全てのyに対してyがxに含まれない」xが存在する。こう書かなければいけません。
全てのyに対して、yがxに含まれないxが存在する。こう書いたなら、これは∀y∃x[y∉x] の事です。
No4さんのおっしゃるように、日本語的に不自然でも頭から素直に読むのが間違えずによろしいかと。
∃x∀y[y∉x] は xが存在して,任意のyに対してyはxの要素ではない。
真偽が全く逆になる例を挙げておきます。x,yを実数として
命題1:∃x∀y[x>y] これは偽です
命題2:∀y∃x[x>y] これは真です
どっちも次のように書いてしまいがちです。
すべてのyについてx>yをみたすxが存在する。 →命題1のことか2のことか判明つきません。
「すべてのyについてx>yをみたす」xが存在する。 →命題1の事でしょう。
すべてのyについて、x>yをみたすxが存在する。 →命題2の事でしょう。
声を出して読むと違いが分かりません。ですから私なら、ぎくしゃくした日本語になりますが、
命題1は「あるxがあって、すべてのyにたいして、x>yをみたす。」
命題2は「すべてのyに対して、あるxが存在し、x>yをみたす。」
のように書きます。
回答ありがとうございます。
んー。。難しいですね。。ずっと考えていたのですが、
>命題1は「あるxがあって、すべてのyにたいして、x>yをみたす。」
>命題2は「すべてのyに対して、あるxが存在し、x>yをみたす。」
お恥ずかしいのですが、解説してくださった文章でさえ、此等の違いがよく分かりません。。
どちらも、違う言い方で、(あるxが存在する、というところの位置が違うだけで)同じことを言っているような気がします。。。
どのように違うのか、もう一度簡単に説明してくださると嬉しいです。
No.4
- 回答日時:
>これはどう読めばいいのでしょうか??
こういうのは頭から順番に考える.
下手に日本語的に考えるとわけがわからなくなる
英語的な語順で考える
There exists x such that for any y, y is not an element of x.
xが存在して,任意のyに対して,yはxの要素ではない
日本語としてこなれてはいないが,
記号からの理解としてはこういう順番が分かりやすい
論理の順番として
xがあって,このxが,任意のyに対してyはxの要素ではない
ということ
まあ、xってのは空集合のことでしょう
順番を変えると
∀y∃x[y∉x]
となるけど
これは
「任意のyに対して,あるxが存在して,yはxの要素ではない」
で,まったく意味が変わる
どんなyをもってきても,yを含まない集合xが存在する
ってことで,全体集合があるのならば
{y}の補集合なんかがこれの例になる.
回答ありがとうございます。
分かりやすく解説して頂いてありがとうございます。
英語方式で読めばいいのですね。
頑張ってやってみます。
順番も大切だったのは知りませんでした。
ありがとうございます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 どっちと思いますか 4 2022/10/10 11:16
- 日本語 意味とは何か、どこにあるのか? 16 2022/04/09 11:44
- 高校 勉強ができない。 4 2022/07/03 08:13
- 大学受験 3浪しようと思うので、アドバイスお願いします。 自分としては結構メンタルきつくて後期でいいから、東京 3 2023/02/13 21:47
- 大学受験 身長187cmです。 大学受験で南極老人という人の勉強方法が書かれた本を買いました。ミスターステップ 3 2022/08/02 20:49
- 高校 テスト勉強について 中間テストの結果がかえってきたのですがあまりよくありませんでした。 現代の国語と 2 2023/06/05 00:46
- 哲学 説得力を修辞の巧みさまたは論理の強さの2つに分析するにはどうすると良いでしょうか? 0 2022/07/20 05:46
- 英語 英語勉強 4 2022/07/14 21:01
- 大学受験 娘の大学受験勉強 6 2022/06/30 19:58
- 国家公務員・地方公務員 公務員試験の数的処理で苦戦しています。 1 2023/01/30 08:56
おすすめ情報
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
「PならばQ」と「(Pでない...
-
数学の記号"⇔" "∴"の使い方を教...
-
無理数
-
「4は素因数が2と3だけである」...
-
g◦fが全射で、さらにgが単射な...
-
ある表現が命題かどうかを示す...
-
恒偽命題は英語で何と言う?
-
数学において Pが偽、Qが真のと...
-
任意の実数とは?
-
ある等式⇔ある等式の逆数をとっ...
-
頭を切った円すいの体積と面積
-
真偽表(真理値表)について 今日...
-
a>b ⇒ a-b>0 の命題の逆と真偽
-
原則には、例外が付きものです...
-
簡単な論理の問題のはずが・・・
-
古典論理の否定について。
-
至急お願いします!
-
命題の否定でわからないところ...
-
命題
-
命題と論理式の違いは何でしょ...
おすすめ情報