6人グループの中から2人ひと組で週に一回掃除当番をしたとすると、当番になるのは2週間おきになります。
(一巡するのに3週間かかります)
しかし3週間が経つ(当番を一巡する)度に当番の組み合わせを替えるとなると、
全部で何通りの組み合わせになるのでしょうか?
※ただし最初はA+B→C+D→E+Fの組み合わせで当番をして、次はA+C→B+F→D+Eってな感じで
2回目以降は同じ人がダブらないように組み合わせると仮定して考える、ということで…
つまんない質問でゴメンなさい。

A 回答 (1件)

当番の期間については組み合わせと関係ないので、単純に組み合わせの


数だけ考えてみます。
同じ組み合わせが登場しないように考えるとのことですので、

1) A+B→C+D→E+F
2) A+C→B+E→D+F
3) A+D→B+F→C+E
4) A+E→B+D→C+F
5) A+F→B+C→E+D

の5通りだと思います。全員が、自分以外の全員と1回ずつ組むわけ
ですからね。
    • good
    • 0
この回答へのお礼

…どうもすいませんですf(^^;)
数学なんて程の質問じゃないのにお答えいただいてありがとうございます。
私が難しく考え過ぎていたんですね。あははf(^^;)

お礼日時:2001/05/22 14:14

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QExcelで、数字の組み合わせの合計が一定数になるパターンの抽出

Excelで、数字の組み合わせの合計が一定数になるパターンの抽出

たとえば、つぎの配列があるとします。
A(5){10,20,30,40,50}要素数が5つ1..5、{}は内容
このなかで二つ以上の組み合わせで和が60になる組み合わせを出したいとします
答えは
パタン1:1,2,3  /* 10+20+30 */
パタン2:1,5 /* 10+50 */
パタン3:2,4 /* 20+40 */

同じような処理をExcelの関数では実現できますでしょうか?

また上記のような組み合わせのパタンの総数を求める公式はありますか?
初歩的な高等数学で恐縮です。

Aベストアンサー

> 同じような処理をExcelの関数では実現できますでしょうか?

VBA の既製の関数にはご質問のものはありません。
ただし、質問者さんご自身が Excel の VBA で その関数を作るのは簡単です。
リカージョンのお手本みたいなアルゴリズムでしょうね。

Q(a+b−1)(a+b+1)の計算方法は、 a×a+b×b−1a+b+1a+b+(−1)1 =a^2

(a+b−1)(a+b+1)の計算方法は、

a×a+b×b−1a+b+1a+b+(−1)1
=a^2+b^2−1

であっていますでしょうか?

Aベストアンサー

順番通りに機械的に計算するのがコツです。

左の a と 右の a, -b, +1 をかける。
左の b と 右の a, -b, +1 をかける。
左の -1 と 右の a, -b, +1 をかける。

これを 「a・aがあって、b・bがあって...」と考えながらやると、抜けが出てしまいます。

あとは、既に出ていますが X=a+b とすると、よく知られた公式だけで解くことができて簡単になります。

QExcelで組み合わせ!8人で3コースを巡回するパターンを作成したい

Excel初心者です
8人でA,B,Cの3コースを巡回する組み合わせを作成したいのですが、
例えば、Aコースが1番目の人と2番目の人が組で
以下Bが3&4,Cが5&6、で7&8は休みでスタートします
こういうのを一つのパターンとして、次回は同じコースを回らずかつ
違う人と組んでさらに休みも同じように振り分けたいのです

補足として、1年間の日程で巡回するのは決まった曜日です
組み合わせとして1番目の人は他の2~7番目の人と組む形が
できるようにしたいです。(8人全員に当てはまります)

ちなみに、コースが三つなので8×3で
24パターンあるってことですよね
休みを含めると8×4で32あることになるのかな?

よろしくお願いします

Aベストアンサー

補足です。

> 2520通りということですが

これは8人の組合わせの数です。
4組が休みを入れた4つのコースを取る、というのは
24通りありますから

2520×24となります。これは一日に取り得るパターン
の数です。
これを次回のコースの取り方を考慮したら順列組合せ
となり、2520の24乗となり、いや、24の2520乗かな?
分からない・・・その中から良いものを探すというこ
とです。まあ、あっという間に天文学的数字を超えます。

全宇宙の素粒子の数を集めても10の74乗程度でしか
ありません。

これは答えの無い問題、と私は言い切ります。少しずつ
昔を思い出してきました。
ベストでは答えがありませんが、ベターな答えは出せ
ます。最低で2千万円のプロジェクト、答えに欲出せば
1億円のプロジェクトと見積もります。それでもベター
な回答しかえられません。

しかし順列は諦めるという割きりがあります。大して
意味ないでしょう。得られない答えなんだから。
従って、私なら2520×24の組合せを作って、乱数で今回
は、これにすると決めます。次回は1度使ったパターンを
消して、残りで乱数で選びます。たまたま休みが続く人
が出ても仕方が無い、とせざるを得ません。あるいは
休みが続かない、だけを条件に選び直しはありそうですね。

補足です。

> 2520通りということですが

これは8人の組合わせの数です。
4組が休みを入れた4つのコースを取る、というのは
24通りありますから

2520×24となります。これは一日に取り得るパターン
の数です。
これを次回のコースの取り方を考慮したら順列組合せ
となり、2520の24乗となり、いや、24の2520乗かな?
分からない・・・その中から良いものを探すというこ
とです。まあ、あっという間に天文学的数字を超えます。

全宇宙の素粒子の数を集めても10の74乗程度でしか
ありません。

...続きを読む

Qexp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

フィボナッチ数列F[n]は、
F[1]=1,F[2]=1,F[n+2]=F[n+1]+F[n]
で定義され、リュカ数列L[n]は、
L[1]=1,L[2]=3,L[n+2]=L[n+1]+L[n]
で定義されます。このとき、

exp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

が成り立つそうなのですが、どうしてなのですか?

右辺は、フィボナッチ数列の母関数と似ていてなんとか求められるのですが、左辺をどうして求めていいかわかりません。

なお、式は
http://mathworld.wolfram.com/FibonacciNumber.html
の(68)を参照しました。

Aベストアンサー

↓ここに証明がありますね。
http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf
(2.7 A surprising sum を見てください。)

参考URL:http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf

Q組み合わせパターンを作りたいのですが、どのようにすれば効率的ですか?

こんにちは。

現在、以下のアンケートがあります。

         選択肢(Aはよい、Bはふつう、Cは悪い)
問1 ××× A B C
問2 ××× A B C
問3 ××× A B C



問11 ××× A B C

ここで、問1~問11までの設問全体の組み合わせのパターンがどれだけどんなものがあるのか一気に出したいのですが、どのような方法がありますでしょうか?もし、ソフトがあればご紹介して頂ければ幸いです。

例えば、
パターン1としては、問1~問11までが全てAというパターン、
パターン2としては、問1~問11までが全てBというパターン、
パターン3としては、問1~問11までが全てCというパターン、
パターン4としては、問1~問10まではAで問11だけがBというパターン



など、3の11乗パターン存在すると思ってます。
こうしたパターンの一覧表を一気に作りたいのですが、どのようにすればよろしいでしょうか。

ご教示頂ければ幸いです。宜しくお願い申し上げます。

Aベストアンサー

下記のプログラムをVB6で作ってみました。(あまりきれいではないですけど)pen4-2.8G メモリ512MBで90秒ほどで修了しました。 エクセルのことはよくわかりませんがそんなに難しくはないと思います。

Private Sub Command1_Click()
Dim str_out As String
s_time = Now()
str_out = ""
For i1 = 1 To 3
For i2 = 1 To 3
For i3 = 1 To 3
For i4 = 1 To 3
For i5 = 1 To 3
For i6 = 1 To 3
For i7 = 1 To 3
For i8 = 1 To 3
For i9 = 1 To 3
For i10 = 1 To 3
For i11 = 1 To 3
str_out = i11 & i10 & i9 & i8 & i7 & i6 & i5 & i4 & i3 & i2 & i1
Debug.Print str_out
str_out = ""
Next i11
Next i10
Next i9
Next i8
Next i7
Next i6
Next i5
Next i4
Next i3
Next i2
Next i1
Debug.Print s_time
Debug.Print Now
End Sub

下記のプログラムをVB6で作ってみました。(あまりきれいではないですけど)pen4-2.8G メモリ512MBで90秒ほどで修了しました。 エクセルのことはよくわかりませんがそんなに難しくはないと思います。

Private Sub Command1_Click()
Dim str_out As String
s_time = Now()
str_out = ""
For i1 = 1 To 3
For i2 = 1 To 3
For i3 = 1 To 3
For i4 = 1 To 3
For i5 = 1 To 3
For i6 = 1 To 3
For i7 = 1 To 3
For i8 = 1 To 3
For i9 = 1 To 3
For i10 = 1 To 3
For i11 = 1 To 3
str_out = i11 &...続きを読む

Qf(a+√b)=c+√b f(a-√b)=c-√b f(a+bi)=c+dif(a-bi)=c-di

f(a+√b)=c+√b
ならば
f(a-√b)=c-√b
は成り立ちますか。
√の中は変わらないので計算後も√bのままでいいでしょうか。

f(a+bi)=c+di
ならば
f(a-bi)=c-di
は成り立ちますか。
前回の質問が締め切られてしまいました。
前回回答いただきましたTacosanさま、かなり考えましたがヒントに最後まで答えることが出来ず、申し訳ありませんでした。一定の条件がわかりませんでした。こちらにも是非回答お願いいたします。詳しい回答本当にありがとうございました。

Aベストアンサー

反例:
xの一次式
f(x) = x ・(1-√2) + √2

f(1+√2) = (1+√2)・(1-√2) + √2
=1-2 + √2
=-1+ √2

f(1-√2) = (1-√2)・(1-√2) + √2
= 1 -2√2 + 2 + √2
= 3 - √2 ≠ - 1 - √2

---
f(x) = g(a,|x-a|) + (x - a)
と表せるなら
 f(a+√b) = g(a,|√b|) + √b = g(a,√b) + √b
 f(a-√b) = g(a,|-√b|) + (-√b) = g(a,√b) - √b
c = g(a,√b) とすれば
 f(a+√b) = c + √b
 f(a-√b) = c - √b
です。
ですが、 c + √b という形を見ただけでは、√b が「 + (x-a) 」に由来するものなのか、g(a,|x-a|)の|x-a|に由来するものなのか、g()に由来する xに依存しない定数√b なのか、判断できません。

Qvba  組み合わせパターン表示

1,2,3,--,n-1,nからm個とる組み合わせのパターンを
セル(1,1)から(nCm、nCm)に表示させる処理をVBAで記述
したいのですが、どうすればいいのでしょうか。
よろしくお願いします。

Aベストアンサー

再帰呼び出しのアルゴリズムは「自分自身を呼び出す」わけですから、普通の上から下へ
読んでいくフローとはひと味違って、考えにくいところがあります(実は私もしばらくや
ってなかったので今回少し手こずりました)。

各行の意味を書きます。


Const nStr As String = "あいうえおかきく" '←n個の文字列
Const m As Integer = 3 '←取り出す個数
Dim n As Integer '←ご質問文のn
Dim rStr As String '←m個取り出した文字列を結合したもの
Dim mRow As Integer '←エクセル表へ書き出す際の行番号
Dim Nest As Integer '←再帰呼び出しの深さ=rStrの何文字目に取り出すのか
'-----------------------
Sub combi()
n = Len(nStr) 'nStrの文字列長をnに代入
If m > n Then Exit Sub 'nよりmが大きければ終了
rStr = String(m, " ") 'rStrにm個の空白を代入
Cells.ClearContents '書き出す表をクリア
mRow = 0 '書き出す行番号0クリア
Nest = 0 '再帰呼び出し深さ0クリア
combiPr (0) 'サブルーチン combiPr を引数0で呼び出し
End Sub
'-----------------------
Sub combiPr(n1) 'サブルーチン開始 引数はその時点での開始位置(nStrの何文字目まで処理したか)
Dim mCol As Integer '←エクセル表へ書き出す際の列番号
For nn = n1 + 1 To n - m + Nest + 1 'nnを開始位置の次の文字から始めて残りの文字数の手前までFor~Nextを繰り返す
Nest = Nest + 1 '再帰呼び出しを1カウントアップ
Mid(rStr, Nest, 1) = Mid(nStr, nn, 1) 'rStrのNest番目にnStrのnn番目を代入
If Nest = m Then 'rStrに取り出したのがm文字目なら
mRow = mRow + 1 'エクセル表の次の行へ
For mCol = 1 To m 'rStrの1文字目からm文字目まで書き出す。
Cells(mRow, mCol).Value = Mid(rStr, mCol, 1)
Next
Else 'そうでなければ、つまり現在の開始位置(=nStrの何文字目まで処理したか)がm個まで達してなければ
Call combiPr(nn) '現在の到達位置(nStrの何文字目まで処理したか)にnnをセットしてcombiPrを呼び出す(再帰呼び出し)
End If
Nest = Nest - 1'再帰呼び出しを1後退
Next
End Sub


手順は原始的なものです。
あ~く まで書かれたカードを8枚ならべて3枚抜き出すことを考えればお解りになるで
しょうか。

あ を一枚抜き出し、
い を抜き出し2枚目に置きます。
う を抜き出し、3枚目とします。←これを く まで繰り返します。

次に、い を戻して う を新たな2枚目とします。
え を抜き出し、3枚目とします。←これを く まで繰り返します。

の繰り返し・・・・

を行っているわけです。

ポイントは、1枚目を抜き出すのは か までだという点です。
き まで抜き出したら(く までしかないので)3枚目のカードがなくなります。
同様に2枚目は き までしか抜き出してはいけません。
これが「For nn = n1 + 1 To n - m + Nest + 1」の「n - m + Nest + 1」の部分の意味です。

テキストベースのみの説明なので伝えにくいのですが、不明な点があったら補足説明しますの
で、またおたずねください。

再帰呼び出しのアルゴリズムは「自分自身を呼び出す」わけですから、普通の上から下へ
読んでいくフローとはひと味違って、考えにくいところがあります(実は私もしばらくや
ってなかったので今回少し手こずりました)。

各行の意味を書きます。


Const nStr As String = "あいうえおかきく" '←n個の文字列
Const m As Integer = 3 '←取り出す個数
Dim n As Integer '←ご質問文のn
Dim rStr As String '←m個取り出した文字列を結合したもの
Dim mRow As Integer '←エクセル表へ書き出す際の行番号
...続きを読む

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む

Q数字の組み合わせパターンの取得について

a組 1,2,3,4,5,6,7,8,9
b組 1,2,3,4,5,6,7,8,9
c組 1,2,3,4,5,6,7,8,9

上記のような各組から、それぞれ1つずつ番号を選択し
出来上がる組み合わせパターン全てを取得したいのですが
どうしてもうまく取得できません。
各組の番号の重複はしないように取得したいので
9*8*7=154の組み合わせ全てを取得したいです。
(計算合ってますかね・・・)

例○:1,2,3 2,1,3 ・・・
例×:1,2,1 2,4,4 ・・・

質問も初めてなので、書き方など不明な点や不手際があれば
あわせてご回答いただけると感謝です。

Aベストアンサー

失礼しました。そう例示がありましたね
であれば、504通りになるのかな?

<?
$x=1;
for($i=1;$i<=9;$i++){
for($j=1;$j<=9;$j++){
if($i==$j) continue;
for($k=1;$k<=9;$k++){
if($j==$k or $i==$k) continue;
print $x++.":".$i.",".$j.",".$k."<br>\n";
}
}
}
?>

Qf(x)=2x^2+1+∫(1→0){xf(t)dt}を満たす関数f(

f(x)=2x^2+1+∫(1→0){xf(t)dt}を満たす関数f(x)を求めよ。という問題です。


∫(1→0){xf(t)dt}をx∫(1→0){f(t)dt}に変形


x∫(1→0){f(t)dt}=aとおく


f(x)=2x^2+1+ax


a=∫(1→0){2t^2+1+at}dt

=[2/3t^3+t+a/2t^2](1→0)

=2/3+1+a/2


2/3+1+a/2=a

a=10/3


f(x)=2x^2+10/3x+1


これで合っているでしょうか?

いまいち自信がありません…

書き方がわかりにくくてすみません。

また、他の解き方があったら教えていただきたいです。

よろしくお願いします。

Aベストアンサー

いわゆる積分方程式ですね。細かい点を除いてあっています。

>x∫(1→0){f(t)dt}=aとおく

∫(1→0){f(t)dt}=aとおく
のまちがい


人気Q&Aランキング

おすすめ情報