
数学の授業で楕円の性質として、「焦点から光を発し楕円形に配置した鏡面で反射させると、必ずもう一方の焦点を通る」と説明を受けた覚えがあります。この性質を数式化し変形したら、楕円の式を導出出来るのでしょうか?
焦点をS1(-s,0)、S2(s,0) s>0
曲線上の点をP(x,y)
方針:
Pにおける接線と線分s1Pのなす角と、
Pにおける接線と線分s2Pのなす角が等しい
接線:y-y0=y'(y0)(x-x0) ただしy'(0)は接点p(x0,y0)における微分係数
線分S1P:y=y0/(x0+s)(x+s)
2直線のなす角の公式ってなんだっけ?
もういい歳なので計算は中断しますが、このまま進めて結論は出るでしょうか?
露骨に言うと、どなたか代わりに算出頂けると大変有難いです。
あるいはもっと簡単な方法があるでしょうか?
No.5ベストアンサー
- 回答日時:
平面上の点をS1(-s,0),S2(s,0),s>0
Pを曲線上の点
Pにおける接線ベクトルをPT1=T2Pとすると
∠S1PT1=∠S2PT2
cos(∠S1PT1)=cos(∠S2PT2)
S1Pと接線ベクトルT1Pの内積は
(T1P,S1P)=|S1P||PT1|cos(∠S1PT1)
S2Pと接線ベクトルT2Pの内積は
(T2P,S2P)=|S2P||PT2|cos(∠S2PT2)
PT2=-PT1
|PT1|=|PT2|
だから
(PT1,S1P)/|S1P|=-(PT1,S2P)/|S2P|
Pは曲線上の点だから
Pの座標(x,y)は
ある媒介変数tの関数
x=x(t)
y=y(t)
となっている
Pでの接線があり微分可能だから
x'=dx/dt
y'=dy/dt
とすると
PT1=(x',y')
S1P=(x+s,y)
S2P=(x-s,y)
だから
(PT1,S1P)=(x+s)x'+yy'
(PT1,S2P)=(x-s)x'+yy'
{(x+s)x'+yy'}/|S1P|=-{(x-s)x'+yy'}/|S2P|
{(x+s)x'+yy'}/|S1P|+{(x-s)x'+yy'}/|S2P|=0
{(x+s)x'+yy'}/√{(x+s)^2+y^2}+{(x-s)x'+yy'}/√{(x-s)^2+y^2})=0
ここで
z=|S1P|+|S2P|
とすると
z=√{(x+s)^2+y^2}+√{(x-s)^2+y^2}
z'={(x+s)x'+yy'}/√{(x+s)^2+y^2}+{(x-s)x'+yy'}/√{(x-s)^2+y^2}=0
だから
z=|S1P|+|S2P|=C(一定)となる
このCに対して
a=C/2
b=√(a^2-s^2)
とすると
楕円の式は
(x/a)^2+(y/b)^2=1
となる
y=±b√{1-(x/a)^2}
だからyはxの関数でない
(x,y)=(a,0)での接線方向ベクトルは
(0,1)となってdy/dx=1/0=∞となる
から
上記の媒介変数t=xとすることはできません
x=acost
y=bsint
とはできます
No.4
- 回答日時:
∠S1PS2の二等分線とx軸との交点をQとすると、
角の二等分線の性質より点Qは線分S1S2をS1P:S2Pに内分するので、Qのx座標は、
S1S2*S1P/(S1P+S2P)-s
=2s*√((x+s)^2+y^2)/(√((x+s)^2+y^2)+√((x-s)^2+y^2))-s
={x^2+y^2+s^2-√((x^2+y^2+s^2)^2-4s^2x^2)}/2x
曲線の接線は直線PQと直交するので、
y'=-{x-{x^2+y^2+s^2-√((x^2+y^2+s^2)^2-4s^2x^2)}/2x}/y
この微分方程式を解けばいいのですが、このままでは難しいので、
2sx/(x^2+y^2+s^2)=cosz
と置いてやれば、簡単な微分方程式になります。
No.3
- 回答日時:
焦点をS1(-s,0),S2(s,0),s>0
曲線上の点をP(x,y)
Pにおける接線ベクトル(x',y')と
ベクトルS1Pのなす角をtとすると
Pにおける接線ベクトル-(x',y')と
ベクトルS2Pのなす角がtに等しく
S1P=(x+s,y),S2P=(x-s,y)だから
接線ベクトル(x',y')とS1Pの内積は、
((x',y'),S1P)=|(x',y')||S1P|cost
=(x+s)x'+yy'
接線ベクトル-(x',y')とS2Pの内積は、
(-(x',y'),S2P)=|(x',y')||S2P|cost
=-{(x-s)x'+yy'}
↓
{(x+s)x'+yy'}/|S1P|=cost=-{(x-s)x'+yy'}/|S2P|
↓
{(x+s)x'+yy'}/|S1P|+{(x-s)x'+yy'}/|S2P|=0
↓
{(x+s)x'+yy'}/√{(x+s)^2+y^2}+{(x-s)x'+yy'}/√{(x-s)^2+y^2})=0
ここで
z=|S1P|+|S2P|
とすると
z=√{(x+s)^2+y^2}+√{(x-s)^2+y^2}
z'={(x+s)x'+yy'}/√{(x+s)^2+y^2}+{(x-s)x'+yy'}/√{(x-s)^2+y^2}=0
だから
z=|S1P|+|S2P|=C(一定)となる
このCに対して
a=C/2
b=√(a^2-s^2)
とすると
楕円の式は
(x/a)^2+(y/b)^2=1
となる
ありがとうございます。
Z'=の部分、zをxで微分したら上の条件式と一致するから0になる。微分してゼロなのだから、zはxに依存せず一定値、という内容でいいでしょうか。この場合、x' はどこから出たのでしょうか。
No.2
- 回答日時:
貴方のやり方で ok、楕円の式が導けます。
「なす角が等しい」の立式は、
P に置ける法線ベクトルを ↑n として、
S1P, S2P 方向の単位ベクトルとの内積が等しい
↑n・↑S1P/|↑S1P| = ↑n・↑S2P/|↑S2P|
とすればよいです。
↑n が x, y の微分を含むので、
この微分方程式を解けば、楕円の式になります。
No.1
- 回答日時:
え~と、理系大学生をしているものです。
楕円の式を証明すればいいのでしょうか??
それとも「焦点から光を発し楕円形に配置した鏡面で反射させると、必ずもう一方の焦点を通る」ということを証明すればいいのでしょうか??
-------------------------------------------------
[楕円の式]
焦点S1,S2を結ぶ直線を x軸にとり線分S1S2の中点Oを原点とし、S1,S2の座標をS1(s,0)、S2(-s,0)とする。
楕円の任意の点をPとすれば
PS1+PS2=2a・・・・・・・・・・・・・・(1)
点Pの座標を(x,y)とすれば、2点間の距離の公式により
PS1=√(x-k)^2+y^2・・・・・・・・(2)
PS2=√(x+k)^2+y^2・・・・・・・・(3)
よって(1)の式に(2)、(3)を代入して整理すると
(a^2-k^2)x^2+a^2y^2=a^2(a^2-k^2)
明らかに a>k>0 なので a^2-k^2=b^2 [b>0] ゆえに
楕円の式⇒⇒ x^2/a^2+y^2/b^2=1
-------------------------------------------------
ありがとうございます。
「焦点から光を発しある曲線上に配置した鏡面で反射させると、必ずもう一方の焦点を 通るような曲線はどのような形になるか」です。必要十分条件の矢印で示すと
鏡面反射→楕円
を証明したいのです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
Excelでこの直線と曲線が離れ出...
-
高3 数学
-
数学の問題です。
-
限界代替率MRSの導き方
-
距離の最小値
-
Oを原点とするxy平面上に直線 l...
-
エクセル2007曲線の接線と傾き...
-
放物線 接線
-
次の円の接線の方程式とその接...
-
次の曲線上の点Aにおける接線の...
-
x=tany を微分すると、 dx=1/co...
-
円と接線の関係はどうやって証...
-
【数学】 接点が異なれば、接線...
-
紙に描かれた曲線上の一点にお...
-
早稲田大学の過去問です。 3次...
-
円の接線はなぜ接点を通る半径...
-
常にf’’(x)>0とf’'(x)=0...
-
高校数学での接線についての質...
-
曲線と点の最短距離の出し方
-
曲率(と捩率)の符号は、数式...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
Excelでこの直線と曲線が離れ出...
-
高3 数学
-
エクセル2007曲線の接線と傾き...
-
常にf’’(x)>0とf’'(x)=0...
-
4プロセス数IIの191 の、解説の...
-
【数学】 接点が異なれば、接線...
-
x=tan(x)この方程式を解く方法...
-
数学の問題です2問になります(1...
-
3次関数と、直線が変曲点で接す...
-
二次曲線の問題です。
-
円の接線はなぜ接点を通る半径...
-
曲率(と捩率)の符号は、数式...
-
「接する」の厳密な定義とは?
-
点(a,b)の存在範囲
-
曲線y=xの3乗+3xの2乗-2につい...
-
直線の通過範囲
-
数2 円と直線 点(1.2)を通り...
-
傾きが同じ?
-
微分法の接線の方程式、接点の座標
-
曲線と点の最短距離の出し方
おすすめ情報