No.3ベストアンサー
- 回答日時:
> 可算選択公理(英語版)(選択公理の弱いバージョン)を仮定すれば、\aleph_0 は他のどんな無限基数よりも小さい。
# http://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AC% …
上記から少なくとも可算選択公理が成り立たない体系を想定しないと、質問の無限集合は存在しません。
アレフ0より小さい無限濃度の無限集合が存在するなら自然数全体Nの中への単射が存在するわけです。
その像が最大値を持つと有限になるので、その像は最大値を持たない。
自然数の部分集合は最小値を持つので、小さい方から順に対応付けすると自然数から仮定した無限集合の中への単射が作れそうな気がしますが、可算選択公理がないからこれが関数にならないのかな。
何にせよ、アレフ0と比較不可能というくらいならともかく、より小さな無限濃度の存在はかなり不自然ということは認識頂けると思います。
No.4
- 回答日時:
ちょっとだけコメントしておくと:
> 何にせよ、アレフ0と比較不可能というくらいならともかく、より小さな無限濃度の存在はかなり不自然ということは認識頂けると思います。
ZFでも可算基数と比較可能でより小さな基数は有限基数なので、無限基数でかつ可算基数より「小さい」ものはZFでも存在しません(可算基数は無限基数の中で「極小」)。ZFCなら可算基数は無限基数の中で最小であることが言えます。
No.1
- 回答日時:
見つかってはいない・・・が答えではないかと。
ただ、少なくとも「自然数全体の集合」より小さい連続体というのが
「考えにくい」からこそ「可算濃度」がアレフ=ゼロになったんだと
思いますよ。「連続体仮説は証明も反証もできない命題である」
ということと、表裏一体の話ではないかと・・・。
http://ja.wikipedia.org/wiki/%E9%80%A3%E7%B6%9A% …
この回答へのお礼
お礼日時:2014/12/15 09:43
アレフ=ゼロより1段小さい濃度はアレフ-1になるんではないかと思いますが、アレフ-1は定義不可能ってことですか。
2^アレフ0=アレフ1 なら、普通に考えて 2^アレフ-1=アレフ0ではないでしょうか。
で、両辺の対数をとって アレフ-1=logアレフ0 ではないでしょうか。
アレフ0の対数はとれませんか。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
「無限の一つ前の数字は何?」...
-
無限順列に対して無限組合せを...
-
開集合がコンパクトでない理由
-
合成関数の定義域につきまして
-
交換律と対称律の違い
-
エクセルで(~以上,~以下)...
-
0の0乗っていくつですか?
-
年代と年台・・・どちらが正し...
-
2次関数の応用
-
lim[n→∞](1-1/n)^n=1/e について
-
図形の問題の求め方を教えてく...
-
「余年」の意味について教えて...
-
【数学】 lim x→a ↑これってど...
-
xのとりえる値の範囲
-
漫画の作者は絵画の素人?
-
不毛トピ(思い出)
-
2次関数
-
三角関数の範囲について、 0≦x≦...
-
dx/dy や∂x/∂y の読み方について
-
全員と同じグループを経験でき...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報