数学の問題で4C0の答えを教えてください。

A 回答 (4件)

答は出ていますが、考え方です。



4個から0個選ぶ(「並べる」ではありません)ということは、
4個から4個ともえらんで、取り除いた残りだとも考えられます。

4C0=4C4
一般化すると、nCp=nC(n-p)

4個から4個選ぶ場合の数は1とおりしかありませんので、
4個から0個選ぶことは1とおりということになります。
    • good
    • 0

高校では、二項定理で出てきますね。


4C0=1
ですよ。
これは教科書にも載っていますので確認しておいて下さいね。
    • good
    • 0

いえいえ、”どれも選ばない組み合わせ”なのだから


ただの1通りだと思いますよ。
逆に、”すべてを選ぶ組み合わせ”も1通りしかないわけですからね。
    • good
    • 0

順列組合せの問題ですか。


教科書をよく読んで下さい。
意味も計算の仕方も書いてある筈です。

₄C₀ と云うのは出てこない筈ですが。
「4個の中から0個選ぶ組み合わせ」ですから、
0です。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-6 この計算のどこがおかしいですか?

今高校数学2 複素数と二次方程式 の範囲を勉強しているのですが、
√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6  
この式のどこが間違っているのか分かりません!教えて下さい!
ご回答宜しくお願いします!

Aベストアンサー

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」とがOKなことと
「負の数の根号」×「負の数の根号」の“計算”が
今まで通りOKなことは違うということです。

つまり、根号の中身が負のときには
√a × √b = √ab 
とは計算してはいけないということ。

数学Ⅰの教科書を見てください。
性質★ a>0 b>0 のとき √a × √b = √ab
と書いてありますよね!

√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6 

の計算式では左から2つめの=が誤っていて、それ以外の=は正しいです。
--------------------------------------------------

No4の回答について

> √(ー2)(ー3)=√(ー1)√(2)√(ー1)√(3)=√(ー1)²√2√3=√2√3=√6 だから。 ☆

2つ目の=と3つ目の=が計算の性質★に違反しています。

>この部分を√(ー1)√(2)√(ー1)√(3)=i√(2)i√(3)としてはダメな理由を教えて頂けませんか?
ダメでなく、正しいです。(これは自信を持ってください!)
でも数式☆では2つめの=がNGだから、√6とは等しくありませんね!

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」と...続きを読む

Qx「cm」+y「cm」+z「cm」=6「cm」 xy「cm^2」+yz「cm^2」+zx「cm^2」

x「cm」+y「cm」+z「cm」=6「cm」
xy「cm^2」+yz「cm^2」+zx「cm^2」=11「cm^2」
xyz「cm^3」=6「cm^3」
のときx,y,zの長さ「cm」を求めよという問題があったとします。
このとき三次方程式の解の公式に代入してときますが、このとき次元はどうするのでしょうか?
このときは量に対する比である倍数にだけ注目すると考えれば良いのですか?

Aベストアンサー

問題ありませんよ。

例えば、、、
xyz/x[cm³/cm] という計算を行った場合、
=yz[cm²] というような形で、次数と同じになります。

結果、なんやらかんやら計算をしてx、y、zを求めたときには、その単位は次数=1ですので必ず[cm]になります。
単位をつけつつ計算しても同じ結果になります。

Q誰かこの数学の問題、わかる方いらっしゃいませんか…? 全く理解出来なくて…((

誰かこの数学の問題、わかる方いらっしゃいませんか…?
全く理解出来なくて…((

Aベストアンサー

(1) x-3y=4
(2) a-3b=5
(3) x-y=-4
(4) 3000-7a=-b

Q高校の数学の複素数平面って存在価値あるのですか? 別に習わなくても良くね?

高校の数学の複素数平面って存在価値あるのですか?
別に習わなくても良くね?

Aベストアンサー

複素数平面以外は、存在価値を見て解ているのですか?

三角関数、指数関数、対数なんかも同じでしょ。
ましてや、微分、積分なんて、いつ使う?

何にもしないあなたには、宝の持ちぐされです。

Q蛍光ペンを引いているところが、 なぜこうなるのか分かりません。 こういう公式があるのですか? ※蛍光

蛍光ペンを引いているところが、
なぜこうなるのか分かりません。
こういう公式があるのですか?

※蛍光ペンの所以外は理解しました。

分かる方教えてください

高1進研模試です。

Aベストアンサー

文字が小さくて見えない・・・

辺BCの中点がD
Dから辺AB,ACに引いた垂線の足がE,F
だと

sin(180°-θ)=sinΘ を使って

∠EDF+∠A=180° より
∠EDF=180°-∠A だから

sin∠EDF=sin(180°-∠A)=sin∠A では?

Qなぜ1m+1m=2mなのですか? そう定義したからですか?

なぜ1m+1m=2mなのですか?
そう定義したからですか?

Aベストアンサー

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4kmで出発した弟を、お兄さんが時速16kmの自転車で追いかけるときの追いつく時刻についても、単純な引き算・割り算「ex4×3÷(16-4)」だけでなく、観測者がだれなのかといった視点も含め一般相対論による修正が厳密には必要でしょう。


付言するならば、「算数」という教科は、この世の「自然に受け入れられている身の回りの法則・原理について学ぶ(つべこべ言わずに覚える)教科」であり、「数学」はこの世の法則にとどまらず、厳密な意味での「数の体系」についても学ぶ(厳密性を追求し、証明を求める)教科です。

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4k...続きを読む

Q数学のイコールの揃え方 中学三年生です。数学の先生に、 ○=△=□ と ○ =△ =□ という書き方

数学のイコールの揃え方
中学三年生です。数学の先生に、
○=△=□ 

 ○
=△
=□
という書き方は正解で、
○=△
 =□
という書き方をしてはいけないと教わりました。
これは本当でしょうか?今まで聞いたことのないことなのでよくわかりません。
また、その理由も教えてください。
分かりにくくすみません。よろしくお願いします。

Aベストアンサー

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認めません。
表面的でいいですから、間違いを受け入れましょう。
別の先生に言ったところで、その先生のプライドを傷つけて、目をつけられるだけです。

数学は、「正しいこと」が理解できていれば十分です。
テストの点数なんてどうでもいいじゃないですか。
数学なんですから、正しければそれでいいんです。
テストの紙に「×」って書いてあっても、正しいものは正しいです。
入試とかじゃないのならば、それでいいじゃないですか。

「大嫌いなあの先生に一泡吹かせる」
が目的ならば、追求すればいいですが、
「何が正しいのかを知りたい」
のであれば、あなたが100%正しいので、安心して、次の問題に取り組んでください。

ただ、「慣例」というものがあって、
「数学的には完全に正しいけど、記述方法として好ましくない」
というものはあります。

たとえば、文章題で、回答のはじめに
「"+"記号とは引き算を意味すると定義する」
として、「+」記号を引き算の記号「ー」のように使うことは数学的には
完全に正しいですが、好ましくありません。
ある程度、
「みんなで同じ定義や記述方法をそろえておく」
というのは、コミュニケーションの上では結構重要です。
みんなバラバラの定義を使ったら大変ですよね。

○=△
 =□
確かにこのような書き方は、
「3つの式が等しい」
ことを意味するよりも、
「○を変形したら□になりました」
とか
「○にある変数を代入したら□になりました」
みたいな印象を与えます。
そういう意味で、
「正しいけれど、慣例に従ったほうが良い」
として間違いにしたのならば、少し理解できます。
が、やはり数学的には正しいので、数学の問題である以上
「間違い」には出来ないと思います。

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認...続きを読む

Q3/6a+9を約分すると、2a+3になりますよね?

3/6a+9を約分すると、2a+3になりますよね?

Aベストアンサー

はい。

(6a + 9)/3
= 6a/3 + 9/3
= 2a + 3


3/6a+9
だと
 (3/6)a + 9

 3/(6a) + 9
としか読めません。
どちらか分からないという点で、失格な書き方です。

ましてや
 3/(6a + 9)
とは絶対に読めません。
なお、これは「3」が分子で、「(6a + 9)」が分母です。
画像に手書きしたものとは、分子と分母が逆です。

Q「∂」について

この数学記号を使ってみたいのですが、意味がよく分かりません。小学6年生にも分かる説明で教えてください。

Aベストアンサー

小学生にしては難しい記号を知ってますね。アマチュア無線の国家試験でも目指しているのかな?

これは偏微分の記号です。

関数のグラフを書いた時に、ある瞬間にどの位傾いているかという変化率を連続的に表したもの導関数といい、導関数を求める作業を微分と言います。

身近なところでは、移動距離から速度、速度から加速度を求めるのが微分です。

また、微分の逆の操作を積分と言います。

高校で習うのは実はここまで (タテマエとして) です。

実はその先があります。
高校で習うのは引数が1つの関数だけですが、引数が複数ある関数もあります。

引数が複数の関数で互いに独立している場合、その内1つの引数にだけ注目して微分することができます。これを偏微分と言います。

中学校の数学では統計学という分野が出てくるのですが、その中に正規分布関数というものがあります。

f(x)=1/σ√(2π) exp(-(x-μ/σ)^2/2)

という複雑な式なのですが、これを証明するためには偏微分が必要なのです。

高校でも学ばない理論を持ち出すわけにはいかないので、この関数は無証明で覚えなさいと言われます。

あなたが偏微分に興味があるなら、最もとっかかりやすいのがこの正規分布関数ではないかと思います。Web サイトを検索するといろいろ紹介されているので勉強してください。

小学生にしては難しい記号を知ってますね。アマチュア無線の国家試験でも目指しているのかな?

これは偏微分の記号です。

関数のグラフを書いた時に、ある瞬間にどの位傾いているかという変化率を連続的に表したもの導関数といい、導関数を求める作業を微分と言います。

身近なところでは、移動距離から速度、速度から加速度を求めるのが微分です。

また、微分の逆の操作を積分と言います。

高校で習うのは実はここまで (タテマエとして) です。

実はその先があります。
高校で習うのは引数が1つの関数だけ...続きを読む

Q-n+nについてなんですが、具体的な数字を文字に入れて計算して答えを出したとしても、それがすべての数

-n+nについてなんですが、具体的な数字を文字に入れて計算して答えを出したとしても、それがすべての数字に言えるかどうかなんて確かめるのは不可能ですが、文字の計算はどう考えるべきなんですか?
確かめるのは無理だから、下の写真のように覚えるのがいいですか?

Aベストアンサー

すべての数に対して、0を掛けると0になることは理解できますか?
それが理解できるなら、普通に 3x-3x を計算するだけです。

これは、ひとつには想像力の問題でもあるので、「すべての数に対して確認する必要がある」という発想だと、数学は苦労しますよ。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング