「夫を成功」へ導く妻の秘訣 座談会

 2
sin Xの微分をおしえてください。

A 回答 (4件)

(sinx)^2の微分ですが、



f(x)=sinx → f'(x)=cosx

{f(x)×g(x)}' = f'(x)g(x) + f(x)g'(x)
をつかいます。

よって、下記のように考えます。
f(x)=(sinx)×(sinx)
f'(x) = (sinx)'(sinx)+(sinx)(sinx)' = (cosx)(sinx) + (sinx)(cosx) = 2(sinx)(cosx)
    • good
    • 7
この回答へのお礼

たいへんありがとうございました。わたしの知っている公式でとかれていましたのでたいへん参考になりました。

お礼日時:2007/09/19 08:41

(sin x)^2 の微分


(1)(sin x)を1つの文字だと思って微分する
y^2 を y で微分するようなもの
答 2y → 2(sin x) が得られる
(2) sin x を x で微分する
答 cos x
(1)の答と(2)の答をかける
    • good
    • 1
この回答へのお礼

たいへんありがとうございました。

お礼日時:2007/09/19 08:41

dy/dx=(dy/du)(du/dx)



類似

24/2=(24/12)(12/2)
という風にまるで分数のように取り扱うことができます。

dy/dx=(dy/du)(du/dx)で
y=(sinx)^2
u=sinx
x=xとして処理すると
dy/du=2sinx 意味;(sinx)^2をsinxで微分
du/dx=cosx 意味;sinxをxで微分
したがって

dy/dx=(dy/du)(du/dx=2sinx cosx=sin(2x)
    • good
    • 1
この回答へのお礼

たいへんありがとうございました。

お礼日時:2007/09/19 08:42

{f(x)^2}'=2f(x)f'(x)の公式を使います。



(sin^2 X)'=2(sin X)(sin X)'
=2sinX cosX
=sin(2X)

別解
sin^2 X={1-cos(2X)}/2
の公式を使って
(sin^2 X)'=-(1/2){cos(2X)}'=sin(2X)
    • good
    • 0
この回答へのお礼

たいへんありがとうございました。

お礼日時:2007/09/19 08:42

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qn次導関数の求め方

x^3・sinxのn次導関数を求めたいんですけどやり方がよくわかりません。これはライプニッツの公式をつかうらしいんですけど…帰納法じゃできないんですか?あとよろしければライプニッツを使った解法もおしえてもらえればうれしいです。よろしくお願いします。

Aベストアンサー

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法で証明しなくても一気に結果を求めることができます.

とはいうものの,実際この公式を適用するためには(*1)の右辺を見ればわかるように,個々の関数fとgについての1~n階微分までの情報はあらかじめ知っている必要があります.
この問題では個々の関数の微分は下のように
x^3 → 3x^2 → 6x→ 6 →0(以降すべて0)
sin(x) → cos(x) → -sin(x) → -cos(x) → …(以降繰り返し)---(*2)
簡単に求められます.しかもx^3の方は4次以上の微分は0なので,f=x^3, g=sin(x)とおくと(*1)の右辺でk=4以降の項は出てきません.すなわち,
D^(n)(x^3*sin(x))=x^3*D^(n)(sin(x))+C[n,1]*3x^2*D^(n-1)(sin(x))+C[n,2]*6x*D^(n-2)(sin(x))+C[n,3]*6*D^(n-3)(sin(x))
となります.sin(x)の微分は(*2)よりまとめて
D^(n)(sin(x))=sin(x-nπ/2)
とかけますので,
D^(n-1)(sin(x))=sin(x-nπ/2+π/2)=cos(x-nπ/2)
D^(n-2)(sin(x))=cos(x-nπ/2+π/2)=-sin(x-nπ/2)
・・・
のように変形しておけば,最終的に
D^(n)(x^3*sin(x))=x^3*sin(x-nπ/2)+3nx^2*cos(x-nπ/2)-3n(n-1)x*sin(x-nπ/2)-n(n-1)(n-2)*cos(x-nπ/2)
となることがわかります.

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法...続きを読む

Qy=1/(2x-1)を微分する方法について質問します。

y=1/(2x-1)を微分する方法について質問します。

(g(x)/f(x))'=(g'(x)*f(x)-g(x)*f'(x))/(f(x))^2 を使わず解きたいのですが、なかなか答えが合いません。
途中式がおかしいのでしょうか?


途中式↓
y=1/(2x-1)=(2x-1)^(-1)
y'=(-1)(2x-1)^(-2)
y'=-(1/(2x-1)^2)

Aベストアンサー

括弧の中身が微分されていませんよ。(2x-1)を微分すると2が出てきます。

Qlogの微分を教えてください。

logの微分を教えてください。
「^」とかあっても、よくわからないので、できれば、画像で><
今月15日の定期試験に向けて勉強していますが、答えがないので、わかりません。
そんな問題があと20題ほど。
答えだけでも結構です。解答プロセスはなんとか勉強しますが、
今は自力で自信のある解答を導くことができません。

どうぞお願いいたしますm(xx)m

Aベストアンサー

答えだけでいいならば、分母からlogeを取り除けば正解です。

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q位置を微分したら速度?

物理で習ったのですが
何故
位置を微分したら速度で
速度を微分したら加速度なんですか?

あと加速度と速度はどう違うのですか?

Aベストアンサー

ご質問の内容から察するに、質問者さんは高校1年生くらいでしょうか。

まず、「微分」の意味を考えて見ましょう。微分は「変化の割合」を意味します。グラフで言えば「傾き」が変化の割合ですね。

つづいて、「位置」について考えましょう。物理学では、物体の運動(=時間の経過と位置の変化)を表すために物体の「位置」を時間と関連付けて、例えば x(t) のように時間の関数で表記します。

位置を時間の関数として x(t) で表現した場合、時間変化に対する位置の変化の割合を物理的に考えると、これが速度に相当します。(速度=単位時間当たりの位置の変化、ですから。) これが、「位置を微分したら速度になる」理由です。

さらに、速度と時間の関係を v(t) で表現した場合、時間変化に対する速度の変化を物理的に考えると、加速度を意味します。(加速度=単位時間当たりの速度変化、ですから。) これが、「速度を微分すると加速度になる」理由です。

まとめますと、
○ 微分の数学的な意味合いは、「変化の割合」である。
○ 時間変化に対する位置の「変化の割合(=微分)」は速度である。
○ 時間変化に対する速度の「変化の割合(=微分)」は加速度である。

という説明で納得していただけましたでしょうか?

ご質問の内容から察するに、質問者さんは高校1年生くらいでしょうか。

まず、「微分」の意味を考えて見ましょう。微分は「変化の割合」を意味します。グラフで言えば「傾き」が変化の割合ですね。

つづいて、「位置」について考えましょう。物理学では、物体の運動(=時間の経過と位置の変化)を表すために物体の「位置」を時間と関連付けて、例えば x(t) のように時間の関数で表記します。

位置を時間の関数として x(t) で表現した場合、時間変化に対する位置の変化の割合を物理的に考えると、これが...続きを読む

Qeの微分の公式について

e^xの微分はe^xですが
e^f(x)の微分はf'(x)e^f(x)でいいのでしょうか?
ネットで調べたのですが、e^xの微分の公式の説明ばかりだったので教えてください

Aベストアンサー

あってますよ。
普通に検索すると、確かに見つけにくいですね^^
http://www-antenna.ee.titech.ac.jp/~hira/hobby/symbolic/derive.html

Q分子結晶と共有結合の結晶の違いは?

分子結晶と共有結合の結晶の違いはなんでしょうか?
参考書を見たところ、共有結合の結晶は原子で出来ている
と書いてあったのですが、二酸化ケイ素も共有結合の
結晶ではないのですか?

Aベストアンサー

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素SiO2の場合も
Si原子とO原子が共有結合し、この結合が立体的に繰り返されて
共有結合の物質というものをつくっているのです。
参考書の表現が少しまずかったのですね。
tomasinoさんの言うとおり、二酸化ケイ素も共有結合の結晶の1つです。

下に共有結合の結晶として有名なものを挙げておきます。

●ダイヤモンドC
C原子の4個の価電子が次々に4個の他のC原子と共有結合して
正四面体状に次々と結合した立体構造を持つのです。
●黒鉛C
C原子の4個の価電子のうち3個が次々に他のC原子と共有結合して
正六角形の網目状平面構造をつくり、それが重なり合っています。
共有結合に使われていない残りの価電子は結晶内を動くことが可能なため、
黒鉛は電気伝導性があります。
(多分この2つは教科書にも載っているでしょう。)
●ケイ素Si
●炭化ケイ素SiC
●二酸化ケイ素SiO2

私の先生曰く、これだけ覚えていればいいそうです。
共有結合の結晶は特徴と例を覚えておけば大丈夫ですよ。
頑張って下さいね♪

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素Si...続きを読む


人気Q&Aランキング