今だけ人気マンガ100円レンタル特集♪

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

このQ&Aに関連する最新のQ&A

アンサープラス

世論調査などは調査対象である人全員を調べることは難しいため、一部の人に対象者を絞り、そこから全体を推測をする標本調査と呼ばれる方法が使われているようですね。

こちらに詳しく記載されています。

なるほど統計学園高等部 調査に必要な対象者数
http://www.stat.go.jp/koukou/trivia/careers/care …

A 回答 (6件)

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・


 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。
    • good
    • 26
この回答へのお礼

非常に丁寧に解説してくださり、ありがとうございます。

許容範囲や妥当性を差し支えないと認めるのは、語弊があるかもしれませんが絶対的な判断基準があるのではなくて最終的には人間の判断によるものなのですね。

ただし、長年の経験や研究で精度が上がっているため指標的なものであっても十分信頼に値するということですね。

具体的に例を挙げていただいたため、とてもわかりやすかったです。

ご回答ありがとうございました。

お礼日時:2004/09/15 23:55

>ウス分布であることがわかっていれば、低い危険率(?)で、かつ相当少ないサンプル数でよいのですね。



「良い悪い」ということは判断できません。
既に回答にあるように
>それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。
の世界ですから。

「ガウス分布であるとわかっている」という言葉には.「測定誤差以外の誤差を含まない」という意味を含めています。また.検定能の関係で.このあたり以上のサンプル数を増やしても検定精度があまりあがりません。手間ばかりかかってしまうので.やめてしまうのです。ですから.5%検定しかできないのです。

精度が必要な場合には.もっとサンプル数を増やしたりしますが.「面倒でできない」のです。

面倒な例としては.
農業関係は.1年1作しかできない。気候の因子を入れると.10サンプル取るには10年かかる。
手術を伴う患者の場合には.手術室が使える日が週1回なので.どんなに無理しても年40患者しか切れない。しかも研究対象となる病名の患者ばかりとは限らないので無理しても年5-10サンプルしか得られない。
この点から言えは.理工系は必要ならばいくらでもサンプルを作れるので楽に精度を上げられます。
    • good
    • 4
この回答へのお礼

お礼が遅れてしまい、申し訳ございません。

詳しく教えていただき、ありがとうございました。
例の比較がとてもわかりやすく助かりました。
今後も別のことで質問させていただくかもしれませんが、よろしくお願いいたします。

お礼日時:2004/09/18 11:14

>・客観的:統計学的な定義の範疇にあるもの


定義がありませんから.答えようがありません。

目的に応じて.
20回に1回間違う場合(危険率5%)
100回に1回間違う場合(危険率1%)
等で使い分けますから。
危険率5%でガウス分布であることがわかっている場合には.10個程度です。しかし.「ガウス分布であるか」がわからなくて.「ガウス分布であるか」の検定(適合度の検定)をするとなると.最低でも100個必要になります。
との程度の危険率を選択するかは業界によって異なりますので.統計学での一般論はありません。

>・専門家:統計学者
となると.日本で統計を研究しているところが結構少ないのです(疫学関係学会で数学関係者に査読してもらってから投稿するようにという警告の報告が出ているので.数学系学位を持たない学者は統計学者ではないとします)。この少ないサンプルの中から100人もの人を選んでしまうと.学閥が同じ人を選んでしまうことになります。すると.統計の前提条件として「サンプルが独立であること」の条件が崩れてしまいますので.統計的に意味がない命題であることになります。

統計処理では最初に「間違い」を除き.議論します。ですから.統計的に処理するとなると.「1名の方が間違いをしている」可能性は考えません。
計算自体は単純で.「誰がやっても同じ結果になる」ことが.統計では要求されていますので.同じ条件で「1名が異なる結果を出す」ことは考えられません。

すると.考えられる内容は.
危険率の基準が異なる
用いた方法が異なる
場合です。このあたりの内容を見て処理しますから.「独立である」事が満足した場合では.方法の正当性を議論するか.危険率の正当性を議論するか.ということになります。

なお.検査員100人を使った官能検査のような抜き取り検査の場合には.JIS z 9001から9015あたりを見てください。2者択一ですから.(分布名忘却)分布でしょりします。私は計量型の統計処理しかしませんので.計数型は覚えていませんから答えられません。
    • good
    • 4
この回答へのお礼

>との程度の危険率を選択するかは業界によって異なりますので.
>統計学での一般論はありません。

なるほど、そうでしたか。
ということは、やはりケースに応じて設定する必要があるということでしょうか。

私がこのような疑問を持ったのは「トリビアの泉」で「日本人の女性は○○と思っている」とか「日本中の床屋で一日に切った髪の毛をつなげたら○○Kmになる」といった感じの設問で統計学に明るい△△大学の□□教授(忘れました^^;)が「この調査ですと2,000人に聞けば十分信頼できます」と言ったことに対してでしたが、どうやら私ごときが生意気に質問してよさそうなことではなかったようです。

>危険率5%でガウス分布であることがわかっている場合には.10個程度です。

ガウス分布であることがわかっていれば、低い危険率(?)で、かつ相当少ないサンプル数でよいのですね。

いろいろと勉強になりました。
ありがとうございました。

お礼日時:2004/09/15 23:41

MIL規格を調べて見てください。

米軍の規格ですが、必要なサンプル数について記述があったと思います。
    • good
    • 3
この回答へのお礼

MIL規格の「必要なサンプル数」についてWeb上では見つけることができなかったのですが、軍事規格で規定されているということは相当信頼に値するものと捉えてよさそうですね。

ありがとうございました。

お礼日時:2004/09/14 21:47

客観的に


専門家が

の意味が理解できません。これらの言葉は業界によって意味が変わるのですが.過去の回答経歴を眺めた雰囲気では.どのような分野に関係している方か読み取れませんでした。

この回答への補足

大変失礼いたしました。

・客観的:統計学的な定義の範疇にあるもの
・専門家:統計学者

といった感じです。

特に具体的な分野は想定しておりませんが、個々の統計調査で最低限必要とされるサンプル数がありますよね。(支持率調査や視聴率調査など)

その数はケースによって様々だと思うのですが、それぞれ統計学的に見て客観的に信頼できるサンプル数というのは規定として存在するのか、またどのようにし
て算定するのか。そしてどのような評価基準をもってその母数を統計学的に見て信頼できるとするのかを知りたくなって質問させていただきました。

現実問題で必要に駆られているわけではないので、お暇がありましたらご教授いただけると幸いです。

補足日時:2004/09/14 21:42
    • good
    • 1

たとえば、以下の参考URLはどうでしょうか?



参考URL:http://aoki2.si.gunma-u.ac.jp/lecture/mb-arc/arc …
    • good
    • 1
この回答へのお礼

ありがとうございます!
まさに私が知りたいことが書かれているようなのですが、いかんせん難しくて・・・。(^^;
しかし、「目的達成のために必要なデータ量」の検討方法があることがわかってよかったです。

ご回答ありがとうございました。

お礼日時:2004/09/14 21:42

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q標準偏差を求める際のデータ数について

統計初心者ですが、この度アンケート調査を行い、その結果報告書を作成しなければならないのですが、データ数9の場合、平均、最小、最大に加え、標準偏差も記載しようと思っていますが問題はないでしょうか?

標準偏差は、データが30、50以上ないと意味がないということを聞いたことがあるので戸惑っています。

また問題ない場合、「データ数が少ない場合は補正係数を掛ける」という説明を見かけたのですが、これは単に算出した標準偏差に補正係数を掛けて、記載すればいいのでしょうか? この場合の記載の仕方などについても教えていただけないでしょうか。

Aベストアンサー

標準偏差を求めることは,特に問題はありません。
ただ,データ数が少ないとばらつき具合が正しいかどうかの判断に困るというだけです。

補正係数については,条件によって変化する場合,例えばアンケートだと男女差や年代等による差異を軽減するためには使えますが,質問を見る限りは補正をする必要はないと思います。

標準偏差の意味を知る意味でも,正規分布について調べてみることをおすすめします。

QJIS/ISO規格に基づくサンプル数の考え方・決め方

部品の温度上昇に関する試験依頼がありました。
サンプル数については依頼がありませんでしたが、
ISO規格、JIS規格等に基づく根拠を明確にして
説明することが求められています。

ISO規格、JIS規格に基づくサンプル数の決め方、計算方法、
根拠等についてアドバイスいただきますようお願い申しあげます。

Aベストアンサー

以下に詳細がありますのでご覧下さい。
http://homepage1.nifty.com/QCC/2003-3.html
http://aql.blog19.fc2.com/blog-entry-15.html

業務なら
「JIS Z 9015」そのものをご覧になられては
いかがでしょうか?

Q工業製品の抜き取り検査のN数の決め方

実際に今起きている話ですが、例えばあるロットの一部を1箇所切り出して測定し、規格10以下に対して9であったため合格として納入したところ、客先で同じロットの別の場所からサンプリングし、検査した所、11であったらしく、このロットはNG扱いとなってしまいました。流出防止策として、安易な考えで”ロットの一部を1箇所切り出して測定し、8以上の場合は再サンプリングして判定する”としましたが、統計的に、再度サンプリングするための閾値の決め方やN数の決め方はどのようにすべきでしょうか?検査の工数増をできるだけ避けたいので、むやみやたらとN増しは行いたくなく、かといって仮に数十箇所測定して1箇所だけ規格外があっても、工場としては納品したいのが本音です。工場、客先双方が納得できる落としどころがあればよいのですが。

Aベストアンサー

今回の質問の前提条件を確認したいです.

抜き取り検査が許されているということは,普通は工程能力が十分あることが
確認されていると思います.そうでなければ抜き取り検査ではなく,全数検査する必要が
あるはずです.

今回の結果は「11」とは,規格上限に対して外れていたということでしょうか.
それとも規格上限には余裕があった上で,取り決めた数値に対して外れていたということ
でしょうか.(そうでなければ品質管理としては理屈がなっていないですが)

先ずはこの製品の工程能力がどんなものかそれがスタートです.



>仮に数十箇所測定して1箇所だけ規格外があっても、工場としては納品したいのが本音です

気持ち的には分かるところもありますが,こんなことを了解していては品質管理が分かっていない,
もしくは無視していることにしかならないと思いますが.

Q統計学のサンプル数2000の根拠は?

みなさんこんにちは.

既出でしたら申し訳ないですが,トリビアの泉等で何か統計を調べる際に,統計の専門家が出てきて「2000人も調査すればデータの信頼性は十分だ」などと言っていますよね.

その根拠となる数式なり方法論なりがあるのかな?と思って調べてみたらどうやら↓のページに掲載されている数式のようなのですが,このページを作られている方もその数式の妥当性に疑問を感じておられるらしく,読んでいて余計わからなくなってしまいました.

世論調査におけるサンプリング数の決定
http://www.wound-treatment.jp/next/wound225.htm

どなたか統計学にお詳しい方,簡潔に教えていただけませんでしょうか?(あまりに専門的な議論は理解不能ですのでお手柔らかに‥)よろしくお願いします.

Aベストアンサー

統計的な結果を出す際に、ある信頼度を確保するために必要となる必要サンプル数を決定することはできます。実際、臨床試験や疫学調査などでは必ず行われます。しかしその求め方は、サンプリングや割付の方法といった研究デザインや結果指標として何を見るか、どのような統計的分析方法を使うかによって変わります。それが決まったとしてもどの程度の信頼度を確保するかによって得られる必要サンプル数は変わります。
例えばご質問のリンク先に示されているのは、「単純無作為抽出で結果指標を 2 値の割合とし、正規近似に基づく 2 項確率の推定を行う」場合の式です(サイトの作者はそこまで理解はされていないようですが)。従って「単純無作為抽出で対象者を選び、内閣支持率といった割合で、その真値が極端に 0% や 100% に偏っていないと考えられる場合に、その割合を推定する」のには有効です。そうではなく例えば 2 段階層化抽出で世帯収入の平均値を推定したいといった場合にはまた違った式になります。

つまりどのような場合でも通用するような最小サンプル数といったことは本来言えませんが、ごく一般的に世論調査のような形で単純に内閣支持率のようなものを“それなりの”信頼度をもって調査するのに必要なサンプル数は、通常は 2,000 よりももっと少ないと思います。例えば関東や関西の視聴率調査などはそれぞれ 600 世帯のサンプルに基づいています。その意味で「2,000 あれば十分」という言い方は間違ってはいないと思いますが…。

しかし統計調査の信頼性はサンプル数ももちろん重要ですが、それ以上に調査対象の選定方法(サンプリング方法)が重要です。そのことに言及せずサンプル数がいくつあれば信頼性は充分などと言うのはおかしな話です。1936 年の米国大統領選挙の際にリテラリーダイジェスト社が多額の費用をかけて膨大な人数のアンケート結果を元に共和党の勝利を予想したのにもかかわらず、民主党のルーズベルトが当選して見事に予想が外れたのは有名な話です。これはその後の分析で調査対象に偏りがあったことが主な原因と言われています。

ちなみに「データの信頼性」と「結果の信頼性」は指しているものが異なりますのでご注意ください。サンプル数は「結果の信頼性」にはかかわりますが「データの信頼性」には関係ありません。対して、調査対象の選定方法は両方にかかわります。

統計的な結果を出す際に、ある信頼度を確保するために必要となる必要サンプル数を決定することはできます。実際、臨床試験や疫学調査などでは必ず行われます。しかしその求め方は、サンプリングや割付の方法といった研究デザインや結果指標として何を見るか、どのような統計的分析方法を使うかによって変わります。それが決まったとしてもどの程度の信頼度を確保するかによって得られる必要サンプル数は変わります。
例えばご質問のリンク先に示されているのは、「単純無作為抽出で結果指標を 2 値の割合とし、正...続きを読む

Q統計のt検定について

t検定は何人から可能なのですか?また、t検定の精度は7、8人でも可能ですか

Aベストアンサー

 t検定は、2つのグループ(データ(数値)の集まり)間で、統計上差があるかどうかを検定するために用います。
 しかし、本検定方法を適用できるかどうかは、そのデータ分布が正規分布(例えば身長の分布などのような釣鐘型の分布)する前提ですので、正規分布かどうか不明な場合、適用できません。
 また、どちらか一方のグループのデータの分散値が大きい場合、統計上有意な差を検出できません。
 データの分布が正規分布であることが仮定できる場合には、分散値が小さい場合ならば7~8個のデータ数でも、t検定を用いて検定することは可能です。できれば20~30個のデータが揃えば、信頼性が高まります。
 正規分布が仮定できない分布の場合には、t検定よりノンパラメトリック検定の中のウィルコクソンの符号和順位検定か、Mann-Whitney検定など、条件により適用できる検定手法を選択することになります。正規分布でない分布の検定を行う場合には、これらノンパラメトリック検定を用いたほうが検出力が高くなります。なお、この検定は、検定手法によりグループの最低データ数がそれぞれあります。
 データ数については、ひとつのグループに、データが2個しかないと、標準偏差を出せませんので検定できません。3個でも、取り出したデータはそのグループの飛びぬけて離れた値を取り出している可能性があるので、あまり信頼性がないと判断されるでしょう。いくつあればいいのかは、データの分布により異なりますので、一概に言えません。
 t検定の精度という言い方は間違った言い方です。有意な差を検出できるかという意味かと思いますので、そのつもりで述べますが、差の検定は、取り出すデータの元のグループから、いかにまんべんなくデータを取り出せたかにかかっていますので、まんべんなく取り出せていれば少ないデータでも検定して有意な差が得られることもありますし、偏ったとり方をしてしまえば、間違った結果を導きかねませんので、いかにデータを抽出するか、その手法にかかっています。
 また、データをどのような目的で調べるかによっても必要なデータ数が変わります。5%の有意差で調べるのか、1%の有意差で調べるのかで変わりますので、まずは、予備調査を行い、それにより必要なデータサンプル数をそろえて本調査を行ってみてください。

 t検定は、2つのグループ(データ(数値)の集まり)間で、統計上差があるかどうかを検定するために用います。
 しかし、本検定方法を適用できるかどうかは、そのデータ分布が正規分布(例えば身長の分布などのような釣鐘型の分布)する前提ですので、正規分布かどうか不明な場合、適用できません。
 また、どちらか一方のグループのデータの分散値が大きい場合、統計上有意な差を検出できません。
 データの分布が正規分布であることが仮定できる場合には、分散値が小さい場合ならば7~8個のデータ数で...続きを読む

Qn数?N数とはどのような意味ですか?

こんにちは。
よく、サンプルテスト等でn数?N数という言葉を聞くのですがどのような意味ですか?
テスト回数を意味するのでしょうか?

ご存知の方、教えてください。
宜しくお願い致します。

Aベストアンサー

[簡単な例]
りんごの重量を10個量ってみた
→n=10

nはnumberの頭文字です。

Qデータが正規分布しているか判断するには???

初歩的なことですが。。急いでいます。
おわかりになる方 教えてください。
サンプリングしたデータが正規分布しているかどうかを確認するにはどうすればよろしいでしょうか。
素人でも分かるように説明したいのですが。。
定性的にはヒストグラムを作り視覚的に訴える方法があると思います。今回は定量的に判断する方法を知りたいです。宜しくお願いします。

Aベストアンサー

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区間距離、度数区分数は、正規的なグラフになるように試行錯誤で行うことが多い(区間距離や度数区分数を本来の分布に則するようにいろいろ当てはめて解釈する。データ個数の不足や、データの取り方、または見かけ上の分布によりデータのばらつきが正しく反映されて見えないことがあるため)のですが、度数区分数は、機械的に、
=ROUNDUP(1+LOG10(データ個数)/LOG10(2),0):エクセル計算式
で区分数を求める方法があります。
 また、区間距離は、=ROUND((データの最高値-最低値)/(度数区分数値-1),有効桁数)で求め、区分の左端は、
=ROUNDUP(データの最低値-区間距離/2,有効桁数)
右端は=ROUNDUP(データの最高値+区間距離/2,有効桁数)
とします。
 区間がと度数区分数が出たら、その範囲にあるデータ数を数えて、ヒストグラムができます。
 
>最小側、最大側は 最小値、最大値を含んだ値としなければならないのでしょうか。
 ヒストグラム作成の処理に関しては、上記を参考にしてください。
 その前に、データの最小値と最大値が、正しくとれたデータか検討するため、棄却検定で外れ値が存在するか否かを検定し、外れ値が存在しないと結論づけられたら、正規分布の検定を行ってみてください。もし外れ値が存在する可能性があれば、そもそも、そのデータの信頼性が失われます。サンプリング手法の再検討(データの取り方に偏りがなかったか、無作為に設定してデータを取っていたか等)をして、再度データを得る必要があります。また、そもそも検定する以前に、データ数が少ないと判断が付かなくなってしまいますので、データ数は十分揃える(少なくとも20~30個)必要もあります。

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Qある部品の試験サンプル数の決定方法について

よくICの信頼性試験データなどで、
熱衝撃試験 サンプル数N=52、異常判定0
高温動作試験 N=30 異常判定0
のような試験データがありますが、このサンプル数の根拠ってなんでしょうか?

ある母数(製造ロット)に対して何かしらの計算で決定されるものなのか?
試験規格MILやJISでN=○以上、と決められているものなのか?

このサンプル数決定の方法を教えてもらえますでしょうか?
カスタムでICを起こしたときに上記のような信頼性試験を実施するにあたり、何個以上のサンプルを用いることがベターなのか判らないため、相談させてもらいました。

Aベストアンサー

ご参考。
http://okwave.jp/qa/q320122.html
http://okwave.jp/qa/q466644.html
http://ja.wikipedia.org/wiki/%E5%AE%9F%E9%A8%93%E8%A8%88%E7%94%BB%E6%B3%95

Qサンプル数の異なる2群間におけるT検定について

サンプル数の異なる(50,15)2群間の身長の比較を行うのに、T検定をするよう指示を受けました。これは、長男と次男での出産時の身長に差があるかを調べるためですが、長男50人分と次男15人分(母親は異なる)のデータのため、サンプル数が違います。またT検定は私の理解では平均の比較(2群の場合)を行うものであるため、平均ではないこれらにどうしてT検定が良いのか、また統計ソフト(STATISTICAかエクセル)を使う場合にどのようにデータを入力すれば良いのかわかりません。
どなたかご存知の方がいらっしゃればアドバイスをいただけたらうれしいです。
よろしくお願いします。

Aベストアンサー

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想定でき、計算式が分かりやすく、サンプル数が2群で異なっても良い、その数も少なくて良い(大差があるので、1群3例でも有意差をだしています)、そして有意差が出やすいからです。

 この場合は、正規分布しているという条件を満たしているとはいえないだろうと判断します。その場合は、F検定をしてください。これは、2群の平均値ではなく、バラツキによって検定する方法です。正規分布している必要は無いとされています。
 F検定で有意差があれば、問題ありません。t検定では有、F検定ではなし、になると方針が定まりませんが(現在このデータで悩んでいます)。

>どのようにデータを入力すれば良いのか
 t検定を指示した人は、身近にいないのでしょうか。その人に訊くのが一番です。身近にいないのなら、いないと返答があれば、書き込みますが。 というのも、大学などの研究テーマだと、指導教員をさしおいて、はマズイノデ。もしも、このテーマに興味を持てば、私が実施して先に発表します。こんな研究内容がハッキリ分かる書き込みを4年生がやったら、研究室は追放ですね。
 長男、次男だけではなく、三男、四男となると多重比較という方法になります。この場合、H検定(エクセルだけでは無理でしょう)を使います。

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング