A 回答 (4件)
- 最新から表示
- 回答順に表示
No.4
- 回答日時:
単位円でイメージをつかむこともできるよ
sinθとは、半径1の円に角度θの半径を書いた時にできる点Pのy座標がsinθということ
更にcosθとはPのx座標のこと
従ってsinθ=1/4ならPのy座標は1/4
よって三角形AOP(斜辺=1、高さ=1/4)に三平方の定理で
底辺OA=√15/4
Aのx座標がマイナスであることを考慮してA(-√15/4,0)
この結果P(-√15/4,1/4)
よってPのx座標からcosθ=-√15/4
これを用いて
tanθ=sinθ/cosθ
=sinθ÷cosθ
=(1/4)÷(-√15/4)
=-1/√15
(=-√15/15)
もちろん式でやることもできます(こちらが普通)
sin²θ+cos²θ=1から
1/16+cos²θ=1
⇔cosθ=±√15/15
単位円からも分かるとおりθが鈍角ならcosθ<0だから
cosθ=-√15/15
tanについては上と同じ
これを機に単位円の扱い方を覚えてみてはいかがでしょうか。三角比の問題が得意になれるかも^-^¥
No.3
- 回答日時:
No.1です。
sinθ=1/4であれば、
斜辺=4、高さx=1の三角形で、底辺y=√15が求められます。
cosθ、tanθはこの各辺の比なのですぐにわかるでしょう。
ただし、
「θが鈍角で」と言う条件から、θ=90度~180度にあるので、
yは負数となるため、cosθ、tanθともに負数になります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 三角関数教えてください! 3 2022/05/06 19:46
- 数学 tan(z)=h(z)/(z-π/2)から h(z)=-(z-π/2)cos(z-π/2)/sin( 2 2022/08/01 23:44
- 数学 「n≦-2の時 z≠π/2の時 g(z)=tan(z)(z-π/2)^(-n-1) z=π/2の時 22 2022/07/04 22:24
- 数学 【 数Ⅰ 180°ーθの三角比 】 ①sin(180°−θ)=sinθとなる理由 ②cos(180° 4 2022/10/15 17:08
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 写真の数学の問題を見て、tanθ1+tanθ2+tanθ3=1/2+1/3+1/4 と考えてしまうの 3 2023/05/14 23:05
- 数学 複素数についての質問です。 1+iの主値を求める問題で回答が以下のようになっていました。 1+i = 5 2022/07/22 04:04
このQ&Aを見た人はこんなQ&Aも見ています
-
見学に行くとしたら【天国】と【地獄】どっち?
みなさんは、一度だけ見学に行けるとしたら【天国】と【地獄】どちらに行きたいですか? 理由も聞きたいです。
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
「覚え間違い」を教えてください!
私はかなり長いこと「大団円」ということばを、たくさんの団員が祝ってくれるイメージで「大円団」だと間違えて覚えていました。
-
おすすめのモーニング・朝食メニューを教えて!
コメダ珈琲店のモーニング ロイヤルホストのモーニング 牛丼チェーン店の朝食などなど、おいしいモーニング・朝食メニューがたくさんありますよね。
-
タイムマシーンがあったら、過去と未来どちらに行く?
20XX年、ついにタイムマシーンが開発されました。 あなたは過去に行く? それとも未来? タイムマシーンにのって、どこに行って、何をしたいか教えてください!
-
θが鈍角のとき、sinθ=4分の3のときcosθとtanθの値を求めよ。という問題が全くわからないで
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・ちょっと先の未来クイズ第5問
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
加法定理の応用問題でcosα=√1-s...
-
e^iθの大きさ
-
tanθ=2分の1のときの sinθとcos...
-
3辺の比率が3:4:5である直...
-
画像のように、マイナスをsinの...
-
高1 数学 sin cos tan の場所っ...
-
急いでます! θが鈍角で、sinθ...
-
sinθ<tanθ
-
数学
-
sinθ+cosθ=1/3のとき、次の式の...
-
sin三乗Θ+cos三乗Θの値は?
-
数学Iで分からない問題があります
-
数学IIIができる方!!! 「x+...
-
三角関数の加法定理について
-
この値を求めてください
-
0°、90°、180°のsin,cos,tanの値
-
合成関数
-
sinθ +cosθ =1/3 (0°≦θ≦ 180°)...
-
次の三角比を45°以下の角の三角...
-
θが有名角ではない問題を教えて...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^iθの大きさ
-
θが鈍角のとき、sinθ=4分の3の...
-
高1 数学 sin cos tan の場所っ...
-
画像のように、マイナスをsinの...
-
次の三角比を45°以下の角の三角...
-
tanθ=2分の1のときの sinθとcos...
-
数学Iで分からない問題があります
-
3辺の比率が3:4:5である直...
-
Merchantの最小抵抗説(微分?...
-
教えてください!!
-
急いでます! θが鈍角で、sinθ...
-
sin2xの微分について
-
加法定理の応用問題でcosα=√1-s...
-
この問題の半径rと中心核αの扇...
-
こんど面接なんですが
-
sinθ+cosθ=1/3のとき、次の式の...
-
二つの囲まれた楕円の共通の面...
-
式の導出過程を
-
複素数表示をフェーザ表示で表...
-
三角関数の合成
おすすめ情報