
No.2ベストアンサー
- 回答日時:
露骨な誘導に従って、牛馬の如く計算するだけです。
(1)
f(0) は、与式に x=0 を代入して、f(0) = 0^2 - ∫[0→0]なんかdt = 0.
与式を f(x) = x^2 - ∫[0→x](x-t)f'(t)dt
= x^2 - x∫[0→x]f'(t)dt +∫[0→x]tf'(t)dt
= x^2 - x{ f(x) - f(0) } + [ tf(t) ]_(0→x) - ∫[0→x]f(t)dt ; 部分積分
= x^2 - xf(x) + 0x + xf(x) - 0f(0) - ∫[0→x]f(t)dt
= x^2 - ∫[0→x]f(t)dt
と計算してから、微分すると、f'(x) = 2x - f(x).
(2)
(1)の式を変形して、2x = f(x) + f'(x).
両辺に e^x を掛けて、2xe^x = (e^x)f(x) + (e^x)f'(x) = (e^x f(x))'.
(3)
(2)の式を 0→x で積分して、
(e^x)f(x) - (e^0)f(0) = 2∫xe^x = 2[ xe^x ] - 2∫(e^x)dx = 2xe^x - 2(e^x - 1)
より f(x) = (e^-x){2xe^x - 2(e^x - 1)} = 2x - 2 + 2e^-x.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
f(x) g(x) とは?
-
n次導関数
-
マクローリンの定理の適用のし...
-
大学数学 解析学 区間[a,b]で...
-
関数f(x)がC∞-級関数であること...
-
"交わる"と"接する"の定義
-
至急です。 マクローリン展開を...
-
数学 定積分の問題です。 関数f...
-
二次関数 必ず通る点について
-
積分する前のインテグラルの中...
-
マクローリン展開
-
極値って極大値か極小値のどち...
-
ニュートン法について 初期値
-
数学の記法について。 Wikipedi...
-
対数と極限についてです
-
左上図、左下図、右上図、右下...
-
x=0におけるテイラー展開を求...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
極限、不連続
-
大学の問題です。
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
微小量とはいったいなんでしょ...
-
数学の f(f(x))とはどういう意...
-
微分について
-
大学の問題です。
-
マクローリンの定理の適用のし...
-
差分表現とは何でしょうか? 問...
-
ニュートン法について 初期値
-
【数3 式と曲線】 F(x、y)=0と...
-
左上図、左下図、右上図、右下...
-
「次の関数が全ての点で微分可...
-
f(x)=sin(x)/x って、とくにf(0...
-
"交わる"と"接する"の定義
-
∫[x=0~∞]logx/(1+x^2)の広義積...
-
関数方程式f(x)=f(2x)の解き方...
-
次の等式を満たす関数f(x)を求...
-
yとf(x)の違いについて
-
n次導関数
-
z^5=1の虚数解の一つをαと置く...
-
x<1の時、e^x <= 1/(1-x) であ...
おすすめ情報
変換するときにこれしかなかったので普通の積分です。
申し訳ありません。
自分なりの解答を作ろうとしましたがどうしても出すことができなく助けをお借りしたいです。