
No.1ベストアンサー
- 回答日時:
底は底 何乗部分は何乗部分でわけて考えます
(1)なら 1クッションおいて0.8^0.8との大小比較をします
0.8の●乗なので 底0.8をみて ●が大きくなるほど 0.8の●乗は小さくなります
要するに y=0.8^xという関数(グラフ)はxが大きくなるほどyは小さくなるということです
だから x部分が0.9>0.8であることより y=0.8^0.9より y=0.8^0.8のほうが大きくなります
⇔0.8^0.9<0.8^0.8
次に 何乗部分がそろっている場合です
結論から言えば
y=x^aでは xが大きくなるほどyもおおきくなります・・・①
これは√xを参考にすれば分かりやすく a=1/2とすれば
y=x^(1/2)=√xについて
xが大きくなるほどyも大きくなりますから(y=√x⇔y²=x 、xが大きくなるほどy²も大きくなる⇔xが大きくなるほどyも大きくなる)
a部分が1未満であろうとも①が成り立つことが想像できるはずです
ゆえに0.8^0.8<0.8^0.9
1クッションおいて
0.8^0.9<0.8^0.8 、0.8^0.8<0.8^0.9と分かりましたから
0.8^0.9<0.8^0.9とわかるのです
(2)(3)もクッションを使って大小が分かるはずです
No.3
- 回答日時:
#1,#2さらに補足
正の実数aに関して
a<b⇔a^n<b^n…①が成り立ちます(ただしnは自然数)
つまり 正の数なら何乗しても大小関係が変わらないということです
これを(1)で0.8^0.8と0.9^0.8の比較に応用するのも良い作戦です!!
両者を5乗!
すると指数法則により (0.8^0.8)⁵=0.8^(0.8x5)=0.8⁴=0.64²(=だいたい0.36を少し上回るくらいの数字)
(0.9^0.8)⁵=0.9^(0.8x5)=0.9⁴=0.81²(=0.64を上回るくらいの数字)
ゆえに (0.8^0.8)⁵<(0.9^0.8)⁵
ということは①により 5乗する前も大小は同じで(0.8^0.8)<(0.9^0.8) ということになります!
No.2
- 回答日時:
#1訂正 終盤の「ゆえに」以降間違いました
正しくは
ゆえに0.8^0.8<0.9^0.8
1クッションおいて
0.8^0.9<0.8^0.8 、0.8^0.8<0.9^0.8と分かりましたから
0.8^0.9<0.9^0.8とわかる
です
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
関連するカテゴリからQ&Aを探す
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
(1800×900)と書いてあ...
-
縦の長さが60センチ 横の長さが...
-
空間ベクトル 内積 問、1辺の...
-
図形群の法則性の問題
-
川幅とはどこからどこまでですか?
-
力のモーメント
-
整形の勉強をしています。 長軸...
-
芯出し・芯出し作業
-
ご質問です。機械設計の問題で...
-
上下方向の力を左右方向に変換...
-
二層構造とは??
-
「長手」の対義語は何でしょうか?
-
テコの原理を逆向きに利用して...
-
電磁気の問題の解き方を教えて...
-
三点支持について
-
角度からベクトルに変換するに...
-
ホットスポットと天皇海山列の...
-
四角形の寸法表記方法 縦×横...
-
どちらが正しいの?
-
クレーンでの用語の意味を教え...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
(1800×900)と書いてあ...
-
縦の長さが60センチ 横の長さが...
-
力のモーメント
-
整形の勉強をしています。 長軸...
-
「長手」の対義語は何でしょうか?
-
TD、MDって何の略?
-
SEMのstigma調整って何ですか
-
directionとorientationの(方向...
-
上下方向の力を左右方向に変換...
-
川幅とはどこからどこまでですか?
-
図形群の法則性の問題
-
問題:点Aから点Bまでの最短経路...
-
四角形の寸法表記方法 縦×横...
-
相乗モーメントってなんですか?
-
ブリルアンゾーンについて
-
鉛筆を芯だけにするには?
-
三点支持について
-
南太平洋にみえる直線状のもの...
-
ご質問です。機械設計の問題で...
-
二層構造とは??
おすすめ情報