d^2 y/dx^2+2dy/dx+5y=5cosx   y(0)=1、 dy/dx(0)=1/2
  という問題でこの解のグラフの概形を描けというものなんですが

A 回答 (2件)

補足です。



(7)式のグラフを描く時は、つぎの公式を使って変形して、描いてください。

a・sinx+a・cosx=c・sin(x+d)
ただし、c=√(a^2+b^2)
tand=b/a

分からないところがありましたら、式の番号を書いて、何処が分からないか必要なところだけ、質問して下さい。

以上です。
    • good
    • 0
この回答へのお礼

どうもありがとうございました。参考になりました。

お礼日時:2001/08/21 21:48

定係数線形微分方程式ですから解き方はワンパターンですネ。


d^2 y/dx^2+2dy/dx+5y=0・・・・・・・(1)
と置いた時の一般解を求める。
解はy=e^-x(c1cos2x+c2sin2x)・・・・・・(2)
d^2 y/dx^2+2dy/dx+5y=5cosx・・・・・(3)   
これの特殊解を求める。
特殊解はY0=cosx+(sinx)/2・・・・・・・(4)
ゆえに、求める一般解は
y=e^-x(c1cos2x+c2sin2x)+cosx+(sinx)/2・・・・・(5)
となります。

境界条件(初期条件)y(0)=1、 dy/dx(0)=1/2 ・・・・(6)
を代入して、係数c1,c2を求めると共に0ですから
解はy=cosx+(sinx)/2・・・・・・・・・・・・・(7)
となります。
これのグラフを描くと良いでしょう。
計算間違いはないと思いますが、、、自信ありませんm(__)m
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q1.(d^4y/dx^4)+(2d^2y/dx^2)+8dy/dx)+

1.(d^4y/dx^4)+(2d^2y/dx^2)+8dy/dx)+5y=0
2.(dy/dx)+1-x-x^2-(2x+1)y-y^2=0
3.{(x+1)d^2y/dx^2}+{(4x+5)dy/dx}+(4x+6)y={(x+1)^2}e^(-2x)
の一般解を求めたいです。
解答解説をお願いします。

Aベストアンサー

演算子法を用います。
D=d/dxとします。
(1)
(D^4+2D^2+8D+5)y=0.
係数を書き間違えてませんか?
(2)
y'=y^2+(2x+1)y+x^2+x-1.
y'+1=(x+y)^2+(x+y).
z=x+y.
z'=1+y.
z'=z^2+z.
z=z^3/3+z^2/2+C.
あとは展開するだけ.
(3)
まずは同次方程式を考える。
[(x+1)(D^2+4D+4)+(D+2)]y=0.
[(x+1)(D+2)+1](D+2)y=0.
よってexp(-2x)は同時方程式の解となる.
つぎにy=w×exp(-2x)として、階数低下法を用いる.
このyを問題の微分方程式に代入する.
(x+1)w"+w'=(x+1)^2.
w'=zとすると
z'+[1/(x+1)]z=(x+1).
これは一階の線形微分方程式なので解ける.
z
=exp(-log(x+1))[∫(x+1)exp(log(x+1))dx+C]
=1/(x+1)[∫(x+1)^2dx+C]
=-1/(x+1)^2+C/(x+1).
w=1/(x+1)+Clog(x+1)+B.
y=[1/(x+1)+Clog(x+1)+B]exp(-2x).

疲れたので終わり・・・

演算子法を用います。
D=d/dxとします。
(1)
(D^4+2D^2+8D+5)y=0.
係数を書き間違えてませんか?
(2)
y'=y^2+(2x+1)y+x^2+x-1.
y'+1=(x+y)^2+(x+y).
z=x+y.
z'=1+y.
z'=z^2+z.
z=z^3/3+z^2/2+C.
あとは展開するだけ.
(3)
まずは同次方程式を考える。
[(x+1)(D^2+4D+4)+(D+2)]y=0.
[(x+1)(D+2)+1](D+2)y=0.
よってexp(-2x)は同時方程式の解となる.
つぎにy=w×exp(-2x)として、階数低下法を用いる.
このyを問題の微分方程式に代入する.
(x+1)w"+w'=(x+1)^2.
w'=zとすると
z'+[1/(x+1)]z=(x+1).
これは一階の線形微分...続きを読む

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Qx+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

クリックありがとうございます(∩´∀`)∩

 ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

この問題について説明をお願いします。

Aベストアンサー

おおざっぱな説明になりますが、左の式を
z=-x-y
として、それを右の式のzに代入します。
それを展開してまとめると
x^2-2xy+y^2=0
という式になります。
あとはこれを因数分解すれば
(x-y)^2=0
となるので、x=yという答えがでます。
与えられた条件がほかになければこれでいいはずです。

Qx^2-y^2+x+3y-2=0 ⇔(x+y-1)(x-y+2)=0にする方法

教えてください!!いま二次曲線を学んでるのですけど、x^2-y^2+x+3y-2=0 
⇔(x+y-1)(x-y+2)=0にする方法を
教えてください!!
なぜかというと、私は
(x+1/2)^2-(y-3/2)=4としかできません!

Aベストアンサー

(⇒)
xの次数でそろえます。

x^2-y^2+x+3y-2=0

x^2+x-(y^2-3y+2)=0

()の中を因数分解します。

x^2+x-(y-1)(y-2)=0

全体を因数分解します。

(x+y-1)(x-y+2)=0

※yの次数でそろえてもできます。
※因数分解の仕方は教科書がわかりやすいと思うので、
教科書を参照してください。


(←)
一つずつ掛け合わせて展開していきましょう。

(x+y-1)(x-y+2)=0

x^2-y^2+x+3y-2=0

Q(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dyの成立条件

(d/dx)∫(a~b)f(x,y)dy(つまり、f(x,y)をyで積分(定積分)したものをxで微分したもの)を考えます(ただし、(a~b)は積分範囲を表し、aやbは定数であって、xの関数ではありません)。
これは多くの場合、∫(a~b)(d/dx)f(x,y)dy(つまり、f(x,y)を先にxで微分してからyで積分したもの)と等しくなります。しかし、まれに一致しない場合があります。例としては、f(x,y)=(sin xy)/y (x>0)の場合が挙げられます。
そこで、
(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dy
が成立するための必要十分条件を教えていただきたいと思っています。
もし簡単には述べられない条件でしたら、何のどこを参照すればこのことが論じられているのかを具体的にご教示いただけると幸いです。

Aベストアンサー

積分と微分の順序交換については
必要十分条件は一般にはありません.
ただし,十分条件は知られています.

リーマン積分の範囲だと
f(x,y)が連続で,f_y(x,y)も連続くらいの条件があれば
d/dy∫f(x,y)dx = ∫f_y(x,y)dx
くらいがいえるはずです.
#積分区間とかは省きます.

その十分条件で一番便利だろうと思われるものは
ルベーク積分の言葉で記述されます.
興味があれば,「ルベーク積分」の本を
追いかけてください.
・ルベークの有界収束性定理
・L^1空間
というようなものが理解できれば,順序交換の定理は理解できます.


このカテゴリの人気Q&Aランキング

おすすめ情報