No.5ベストアンサー
- 回答日時:
#2です。
仕事が忙しかったので考えていなかったけど、週末になって思い出しました。そして、計算方法を思いつきました。時間が掛ってスミマセンでした。
幾何分布の期待値は無限等比級数の和を使って計算できます。
ところが、今回はn回で打ち切りです。問題文からは(n+1)回までの和と読み取れますが、1投目は無視するからn回です。
無限等比級数は簡単ですが、nを含んだまま有限の和を求めるのは困難です。
そこで、簡単にするために、全体の和からそれ以降の等比数列の和を引きます。
それ以降の和は、(n+1)回目を初項とする無限等比級数の和です。問題文からは(n+2)回目以降と読み取れますが、1投目は無視するから(n+1)回です。初項はn回ハズレ続けた値になります。
等比数列の公式に入れてやれば、解答の式が出ます。
ただし、1回目は無視して計算し、後から足します。
後半の初項は(5/6)^n、無限等比級数の和は(初項)/(1ー公比)
次の式の6は今回の幾何分布の期待値で全体に相当します。そこから後半の級数の和を引きます。最後の1は、無視した1投目です。
6-(5/6)^n / (1-5/6)+1
=7-5(5/6)^(n-1)
導出終わり。
No.4
- 回答日時:
#2です。
お示し頂いた式を検証しました。
確かに、あの式は打ち切り回数を増やしていくと、私の直感通り、幾何分布の期待値6に最初の1回分を足した7に漸近していきますね。
数式化で躓いているのが、打ち切りまでに同じ目が揃わなかったときは、X=n+1とせよ、の部分です。もう少し考えさせて下さい。
興味深い問題です。
(5/6)^(n-1)は、打ち切り回数までに揃わなかった確率ですが、なぜそれに5を掛けて、目が揃うまで続けた場合の期待値7から引けば良いのか、理由が分かりません。
No.3
- 回答日時:
#2です。
コメントありがとうございます。
nの関数になるんですね。n→∞のケースでなく(nが消えるのではなく)、nの関数として求まるのですね。
すなわち、X回<n回すなわち同じ目が出るまでX回続けるのでなく、n回打ち切りなんですね。
これを見落としていました。
ということは、n回以降に見つかる場合を考慮して引かなければなりませんね。
チャレンジしてみます。
No.2
- 回答日時:
企業で統計を推進する立場の者です。
直感ですが、
これって幾何分布の問題で、n回で生起するなら期待値はE(X)=1/p。
すなわち、X回目で「初めて同じ目が並ぶ」ときXの期待値は、問題文どおりそれに1投目を足して「7」になるはずなんですが、#1さんの回答を計算するとそうなるのかあ。
あと、感覚的には、もっと早く並ぶと感じるのですが、その場合は中央値を使います。問題は期待値を求めよ、ですから感覚とはズレます。
期待値の導出が必要なら書きますが、ネットでも溢れています。
高校英語の教科書に出ていた「タコのパウル君」は中央値でやっていたので、質問された際、しばらく悩みました。
No.1
- 回答日時:
毎回の「出た目」に対して、次に「同じ目が出るか」(確率 1/6)、「同じ目が出ないか」(確率 5/6)の連続です。
n回までに同じ目が続けて出れば、そこで終了ということなのでしょう。
1回目:何の目でもよい。確率1。このとき X は定義できない。
2回目:1回目と同じ目が出る確率 1/6。 このとき X=2
3回目:2回目が「1回目と同じ目」が出ない(5/6)、かつ「2回目」と同じ目が出る(確率 1/6)。 このとき X=3
以上の考察を続ければ
・X=2 となる確率:1 * 1/6 = 1/6
・X=3 となる確率:1 * 5/6 * 1/6 = 5/36
・X=4 となる確率:1 * 5/6 * 5/6 * 1/6 = 25/216
・・・
・X=n となる確率:5^(n-2) /6^(n-1)
・X=n+1 となる確率:5^(n-1) /6^(n-1)
従って、X の期待値は
Σ[i=2,n]{i * 5^(i-2) /6^(i-1)} + (n+1) * 5^(n-1) /6^(n-1)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
カンパ〜イ!←最初の1杯目、なに頼む?
飲み会で最初に頼む1杯、自由に頼むとしたら何を頼みますか? 最初はビールという縛りは無しにして、好きなものを飲むとしたら何を飲みたいですか。
-
秘密基地、どこに作った?
小さい頃、1度は誰もが作ったであろう秘密基地。 大人の今だからこそ言える、あなたの秘密基地の場所を教えてください!
-
メモのコツを教えてください!
メモを取るのが苦手です。 急いでメモすると内容がごちゃごちゃになってしまったり、ひどいときには全く読めない時もあります。
-
ちょっと先の未来クイズ第4問
11月ごろに発表される、2024年の「新語・流行語大賞」にノミネートされる言葉を書けるだけ書いてください。
-
高校三年生の合唱祭で何を歌いましたか?
大人になると大人数で合唱する機会ってないですよね。 思い出すと、高校三年生の合唱祭が最後でした。 そこで、みんなの思い出の合唱曲を知りたい!
-
数学の確率の問題です。 問 1つのサイコロを投げ続けて、同じ目が2回連続して出たら終了するものとする
高校
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
五分を6回連続で外すのはなん...
-
一般常識を教えてください。1割...
-
数学の質問です。 一枚の硬貨を...
-
数Aです。 12本のくじの中に5本...
-
ここに2択の問題が4問あります
-
0.222%の確率で手に入るものを1...
-
2択問題の正解確率について
-
6人でジャンケンをした時、1人...
-
確率0.02%って10000人に2人です...
-
30%の確率が5回連続で起きない...
-
ビンゴの確率計算
-
当たりが4本入った10本のくじが...
-
統計学、順列・組み合わせの問...
-
じゃんけんの問題
-
お願いします! 一個のさいころ...
-
75%を3回連続で引かない確率
-
高校数学の問題です。 次の問題...
-
確率
-
血液型がA型とO型の両親では...
-
コインを投げ、連続して表が出...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
一般常識を教えてください。1割...
-
五分を6回連続で外すのはなん...
-
数学の質問です。 一枚の硬貨を...
-
1個のサイコロを3回投げる時、...
-
30%の確率が5回連続で起きない...
-
4択一の50問100点満点の問題を...
-
75%を3回連続で引かない確率
-
統計学、順列・組み合わせの問...
-
ビンゴの確率計算
-
じゃんけんの問題
-
6人でジャンケンをした時、1人...
-
P(A|B)などの読み方
-
反応速度や濃度は、大きいor小...
-
確率0.02%って10000人に2人です...
-
2択問題の正解確率について
-
確率
-
ジョーカーを含まない52枚のト...
-
じゃんけんを三人でして、負け...
-
当たりが4本入った10本のくじが...
-
中学校数学での確率問題への解...
おすすめ情報
答えは7-5(5/6)^(n-1)となるそうです。