
No.4ベストアンサー
- 回答日時:
No.3の答えに対する考察です。
まず2^n-1=Σ_(0<=i<=n-1)2^i--(*)という等式があります。
等比数列の和の式です。
これを利用すると例えば
2^6-1=(2^5)+(2^4)+(2^3)+(2^2)+(2^1)+(2^0)
となります。
これを2個づつまとめると
{(2^5)+(2^4)} + {(2^3)+(2^2)} + {(2^1)+(2^0)}=
(2^4)*{(2^1)+(2^0)}+(2^2)*{(2^1)+(2^0)}+{(2^1)+(2^0)}=
{(2^1)+(2^0)}{(2^4)+(2^2)+(2^0)}となります。
ここでまた(*)を利用すると{(2^1)+(2^0)}=2^2-1となります。
よって2^6-1は2^2-1で割ることができます。
同様に3個づつまとめると
{(2^5)+(2^4)+(2^3)} + {(2^2)+(2^1)+(2^0)}=
(2^3)*{(2^2)+(2^1)+(2^0)}+{(2^2)+(2^1)+(2^0)}=
{(2^2)+(2^1)+(2^0)}{(2^3)+1}
ここで(*)を利用すると{(2^2)+(2^1)+(2^0)}=2^3-1となります。
よって2^6-1は2^3-1で割ることができます。
どうでしょうか、すこしはからくりが分かったでしょうか。
どうやら僕もノウタリンなようであんまりちゃんと一般的な式にできません。
ご勘弁を。
No.5
- 回答日時:
考えすぎ?
単純にユークリッドの互除法を用いれば良いのでは?
ユークリッドの互除法は
<p,q> → p>qなら<p-q,q>、p<qなら<p,q-p>, p=qなら終わり。
という変換を繰り返す。
これは適当な正の自然数nについて
<p,q> → p>nqなら<p-nq,q>、np<qなら<p,q-np>, p=qなら終わり。
としても全く同じ事。ですから、
<(2^91-1),(2^65-1)>→
<(2^91-1)-(2^26)(2^65-1),(2^65-1)> = <(2^26-1),(2^65-1)>→
<(2^26-1),(2^65-1)-(2^39)(2^26-1)> = <(2^26-1),(2^39-1)>→
<(2^26-1),(2^39-1)-(2^13)(2^26-1)> = <(2^26-1),(2^13-1)>→
<(2^26-1)-(2^13)(2^13-1),(2^13-1)> = <(2^13-1),(2^13-1)>→ 終わり。
"="の左辺のカッコはずして展開すれば右辺になります。
No.3
- 回答日時:
2^1-1=1
2^2-1=3
2^3-1=7
2^4-1=15
2^5-1=31
2^6-1=63
2^7-1=127
2^8-1=255
2^9-1=511
2^10-1=1023
…
と続けていくとわかると思いますが
例えば2^6-1の63の約数は3,7,21の3種類で
その中に2^2-1の3と2^3-1の7が入っています。
これは6の約数が2,3だからです。
もちろん2^10-1の1023の約数の中には
2^5-1の31が入っています。
って
私ノウタリンなので式でできません(笑)
ご勘弁を
No.2
- 回答日時:
#1へのお礼に対する回答です。
一般的に成り立つことではないと思いますが、このケースではユークリッドの
互助法が使えます。
まず、(2^13-1)が共通因数であることは明らかですから、両者をこの数で割ってみます。
(2^91-1)=(2^13-1)(2^78+2^65+2^52+2^39+2^26+2^13+1)
(2^65-1)=(2^13-1)(2^52+2^39+2^26+2^13+1)
ですから、(2^78+2^65+2^52+2^39+2^26+2^13+1)と(2^52+2^39+2^26+2^13+1)に共通の
因数が無いかどうかしらべればよいわけです。
(2^78+2^65+2^52+2^39+2^26+2^13+1)=(2^26)(2^52+2^39+2^26+2^13+1)+(2^13+1)
(2^52+2^39+2^26+2^13+1)=(2^39+2^13)(2^13+1)+1
ですから、両者は互いに素です。
つまり、(2^91-1)と(2^65-1)のGCDは(2^13-1)です。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- C言語・C++・C# C#の問題で2つの整数a,bの最大公約数(GCD)を求めるユークリッドの互除法は,aをbで割った余り 2 2022/06/26 16:52
- 数学 ユークリッドの互除法、合同式の問題について 1 2022/05/08 11:49
- 数学 中一数学の【最大公約数と最小公倍数】の問題です。 1問だけでも教えていただけると嬉しいです。 (1) 4 2022/08/01 10:19
- 大学受験 整数問題 Nを正の整数とする。 N+18がN+2の倍数となるようなNの値の個数を求めたい。 解説に、 1 2022/08/13 12:25
- 数学 最小公倍数と最大公約数の求め方で画像のような計算法があったのですが、理解できません。 なぜ2つ数24 4 2022/04/10 13:37
- 大学受験 至急! 数学 整数 なぜ3以上にならないのですか? 3 2023/01/29 12:47
- 数学 √nが有理数ならばnが整数 証明 なぜ √nが有理数ならばnが整数の証明の解答です。わからない部分が 2 2022/08/04 09:41
- 数学 数学 2時間数に関わる問題について教えてください。 x≧1 y≧-1 2x+y=5 であるとき、xy 7 2022/10/29 10:57
- Visual Basic(VBA) Excel のユーザー定義関数でソルバーが動作しない 1 2022/09/05 19:51
- 数学 写真は「ユークリッドの互除法」のイメージ図なのですが これで何故17が最大公約数になるのか分かりませ 2 2023/03/05 16:54
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1/∞=0は、なぜ?
-
数学で、項を指すとき、例えば2...
-
Xの二乗-X+1=0 という2次方程式...
-
大学での微積の問題です。(難問)
-
SQL文のwhere条件文で使う <> ...
-
l'Hospitalの公式について
-
等式記号に似た三本線
-
説明変数と被説明変数とは何で...
-
x/(x+1) = 1 - 1/(x+1)
-
有限な値を取るための条件って...
-
整数問題
-
記号(イコールの上に三角形)...
-
質問です。 a+b+c=0のとき、...
-
a>b,c>dのとき、不等式ac+bd>ad...
-
数学的帰納法の等式の証明
-
どうしてa>0, b>0のとき、a=b⇔a...
-
x^n+1をx^2+x+1で割った余りを...
-
軌跡
-
プール代数の問題なんですけど ...
-
ブール代数の分配律について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1/∞=0は、なぜ?
-
SQL文のwhere条件文で使う <> ...
-
Xの二乗-X+1=0 という2次方程式...
-
数学で、項を指すとき、例えば2...
-
記号(イコールの上に三角形)...
-
質問です。 a+b+c=0のとき、...
-
x^n+1をx^2+x+1で割った余りを...
-
組み合わせの公式
-
高校化学の酸化還元
-
VBAでセルの右下をいちばん下ま...
-
どうしてa>0, b>0のとき、a=b⇔a...
-
等式記号に似た三本線
-
高2数学です α二乗+β二乗=α...
-
2173を2つの平方数の和として2...
-
説明変数と被説明変数とは何で...
-
数学における 等価と同値って同...
-
プール代数の問題なんですけど ...
-
三次方程式の解と係数の関係で...
-
不等式の証明
-
a>b,c>dのとき、不等式ac+bd>ad...
おすすめ情報