No.1ベストアンサー
- 回答日時:
α^3+β^3+γ^3-3αβγ
=(α+β)^3-3αβ(α+β)+γ^3-3αβγ
={(α+β)^3+γ^3}-{3αβ(α+β)+3αβγ}
=(α+β+γ){(α+β)^2-(α+β)γ+γ^2}-3αβ(α+β+γ)
=(α+β+γ){(α+β)^2-(α+β)γ+γ^2-3αβ}
=(α+β+γ)(α^2+β^2+γ^2-αβ-βγ-γα)
という公式があります
No.2
- 回答日時:
説明も無く出てくるのは、説明のしようが無いからです。
筋道立てて考えれば出てくるような簡単な話ではなく、
こういった式変形を思いつくには、ある程度の経験と勘が
必要です。私なら、こんな風に考えてみます。
α+β+γ と αβ+βγ+γα と αβγ を使って
α^3+β^3+γ^3-3αβγ を組み立てるために、
まず、どうやって3乗を作るかを考える。
試しに、安直な (α+β+γ)^3 を展開してみると ←[1]
(α+β+γ)^3 = (α^3+β^3+γ^3)+3(αβ^2+βγ^2+γα^2+α^2β+β^2γ+γ^2α)+6αβγ
となることから、
(α^3+β^3+γ^3)-3αβγ=(α+β+γ)^3-3{αβ^2+βγ^2+γα^2+α^2β+β^2γ+γ^2α}-9αβγ
と判る。右辺の { } 内も対称式だが、
α+β+γ と αβ+βγ+γα と αβγ を使って表せないか。
(α+β+γ)(αβ+βγ+γα) を展開してみると ←[2]
(α+β+γ)(αβ+βγ+γα) = {αβ^2+βγ^2+γα^2+α^2β+β^2γ+γ^2α}+3αβγ
となって、運よく
{ } = (α+β+γ)(αβ+βγ+γα)-3αβγ
が見つかる。これを上の式へ代入して、
(α^3+β^3+γ^3)-3αβγ=(α+β+γ)^3-3{(α+β+γ)(αβ+βγ+γα)-3αβγ}-9αβγ
この式の右辺は、解と係数の関係から値が求められる。
[1][2] の箇所は、やってみたら上手くいったというだけで、
そうやればよいと最初から判っていた訳ではありません。
しかし、上記の流れに沿ってみると、自然な試行錯誤だと
思えるのではないでしょうか。こういう計算を繰り返して、
経験と勘を磨いてゆけばよいのだと思います。
α^2+β^2+γ^2-αβ-βγ-γα はどうしたかって?
忘れましょう。
質問中の因数分解をパッと思いつくならば鮮やかですが、
思いつかなくても、上記のように解けます。
公式暗記なんて無意味です。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・あなたの人生で一番ピンチに陥った瞬間は?
- ・初めて見た映画を教えてください!
- ・今の日本に期待することはなんですか?
- ・【大喜利】【投稿~1/31】『寿司』がテーマの本のタイトル
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
SQL文のwhere条件文で使う <> ...
-
1/∞=0は、なぜ?
-
数学で、項を指すとき、例えば2...
-
どうしてa>0, b>0のとき、a=b⇔a...
-
x/(x+1) = 1 - 1/(x+1)
-
Xの二乗-X+1=0 という2次方程式...
-
数IIの問題
-
高2恒等式
-
説明変数と被説明変数とは何で...
-
三次方程式の解と係数の関係で...
-
VBAでセルの右下をいちばん下ま...
-
大分大学 医学部過去問
-
√(-1)・√(-1)≠1 を証明し...
-
数2 この問題で、この3つの辺...
-
記号(イコールの上に三角形)...
-
1/7=1/m+1/nを満たすmとnの求め方
-
p,qを整数とし、f(x)=x^2+px+q...
-
プラチカIIICの問43の(1)について
-
(d^2θ/dt^2)×(dθ/dt)=1/2×d/dt×...
-
「別々のセルの3つの日付が同じ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1/∞=0は、なぜ?
-
SQL文のwhere条件文で使う <> ...
-
数学で、項を指すとき、例えば2...
-
Xの二乗-X+1=0 という2次方程式...
-
記号(イコールの上に三角形)...
-
exp(1/z)の原点のまわりでロー...
-
説明変数と被説明変数とは何で...
-
等式記号に似た三本線
-
x/(x+1) = 1 - 1/(x+1)
-
どうしてa>0, b>0のとき、a=b⇔a...
-
1/7=1/m+1/nを満たすmとnの求め方
-
数学における 等価と同値って同...
-
質問です。 a+b+c=0のとき、...
-
VBAでセルの右下をいちばん下ま...
-
a>b,c>dのとき、不等式ac+bd>ad...
-
“∠ABC”か、それとも“∠CBA”か
-
組み合わせの公式
-
高2恒等式
-
x^n+1をx^2+x+1で割った余りを...
-
解き方を教えてください
おすすめ情報