毎日毎日暑すぎて平方完成する気も起きません。
ギリギリの体力で実数x,yについて
2(x²+1)(y²+1)≧3(x+y)
が成り立つことを示そうとしています。
左辺-右辺をxの二次式と見て平方完成する…のでしょうか?
でもこのクソ暑いのにそんなことやってられませんよね?
残されたyの式も想像しただけで暑苦しい。
読んでいるだけで汗がひいていくような、爽やかな気分にさせてくれるような、
酷暑の真っ只中、一服の清涼剤となるような証明はございませんでしょうか?
No.10ベストアンサー
- 回答日時:
No.8のつづき、
1変数にしてもだいぶむづかしいですね、
色々考えてつぎのようにしました:
No.8から
f/2=(x²+1)²-3xにおいてx<0ならあきらかにf/2>0なので
x>0の時を考えると、次のように因数分解できる、
(x²+1)²-3x=[x²+1-√(3x)][x²+1+√(3x)]
右辺の後ろのかっこは>0だから前のかっこ内をgとし
√x=zとすれば
g=z⁴+1-√3z=z⁴-z²+z²-√3z+1=(z²-1/2)²+(z-√3/2)²>0
となってx>0でもf/2>0が証明されます。
No.8
- 回答日時:
f=2(x²+1)(y²+1)-3(x+y)が最小値をとるx、yの関係は
ðf//ðx=0、ðf/ðy=0から出る。
第1式を1+x²倍、第2式を1+y²倍して辺々引いて4で割ると
(x-y)(x²y²+x²-3/4x+y²-3/4y+1)=0 となり
左辺の後ろのかっこ内はその第2項以降を平方完成すれば>0がわかるから
x-y=0、x=y なのでfの式でy=xとおいて
f=2[(x²+1)²-3x]の最小値を調べることに帰着すると思うけど
いかが?
No.7
- 回答日時:
f=2(x²+1)(y²+1)-3(x+y)
とする
f
=2(x²+1)(y²+1)-3(x+y)
=2(x²+1)(y-3/{4(x²+1)})²+{16(x²+1)²-9-24x(x²+1)}/{8(x²+1)}
=2(x²+1)(y-3/{4(x²+1)})²+(16x^4-24x^3+32x²-24x+7)/{8(x²+1)}
≧(16x^4-24x^3+32x²-24x+7)/{8(x²+1)}
だから
g(x)=16x^4-24x^3+32x²-24x+7
とすると
f≧g(x)/{8(x²+1)}
g'(x)=8(8x^3-9x²+8x-3)
g"(x)=16(12(x-3/8)x²+37/16)>0
だから
g'(x)は単調増加
g'(0)=-24<0<32=g'(1)
g'(a)=8(8a^3-9a²+8a-3)=0となるような0<a<1がある
a≒0.5484122…
x<a のとき g'(x)<0 だから g(x)は減少
x>a のとき g'(x)>0 だから g(x)は増加
だから
x=a のときg(x)は最小となる
g(x)≧g(a)
最小値
g(a)
=16a^4-24a^3+32a²-24a+7
=(8a^3-9a²+8a-3)(2a-3/4)+37a²/4-12a+19/4
=(37a²-48a+19)/4
>0.951
>0
だから
g(x)≧g(a)>0
だから
f≧g(x)/{8(x²+1)}>0
No.6
- 回答日時:
素朴に、2変数関数の値域で攻めてみようか。
g(x,y) = 2(x²+1)(y²+1) - 3(x+y) と置くと、
∇g(x,y) = (∂g/∂x, ∂g/∂y) = ( 2(2x)(y²+1) - 3, 2(x²+1)(2y) - 3 ).
∇g(x,y) = (0,0) ⇔ x(y²+1) = 3/4 = (x²+1)y.
この式を満たす (x,y) が g(x,y) の極値点の候補となるから...
ああ、これはやはり、 x = u + v, y = u - v の置換が有効そうだな。
代入して
∇g(x,y) = (0,0) ⇔ (u²-v²)(u-v) + (u+v) = 3/4, ←[3]
(u²-v²)(u+v) + (u-v) = 3/4. ←[4]
辺々 [3] - [4] して、 (u²-v²)(-2v) + (2v) = 0 から
2v{ 1 - (u²-v²) } = 0 より
v = 0 または u²-v² = 1.
v = 0 の場合は、[3], [4] へ代入して
u³ + u = 3/4. ←[5]
h(u) = u³ + u - 3/4 置くと、
h’(u) = 3u² + 1 ≧ 0 + 1 > 0 より h(u) は狭義単調増加。
lim[u→-∞] h(u) = -∞, lim[u→+∞] h(u) = +∞ と合わせると、
h(u) はただひとつの零点を持つことが判る。
[5] ⇔ h(u) = 0 ⇔ u = u₀ と置く。
u²-v² = 1 の場合は、[3], [4] へ代入して
2u = 3/4. ←[6]
[6] を u²-v² = 1 へ代入すると、 v が実数でなく、不適である。
さて、g(x,y) は唯一の停留点 (x,y) = (u₀ + 0, u₀ - 0) を持つことが判ったが、
この点は極値点だろうか?
ヘッセ行列を計算してみると、
Hess[ g(x,y) ] =
4(y²+1) 8xy
8xy 4(x²+1)
となるから、
Hess[ g(u₀,u₀) ] =
4(u₀²+1) 8u₀²
8u₀² 4(u₀²+1)
より
det Hess[ g(u₀,u₀) ] = { 4(u₀²+1) }² - { 8u₀² }²
= -48u₀⁴ + 32u₀² + 16
= -16(u₀ + 1)(u₀ - 1)(3u₀² + 1).
h(u) の単調増加と
h(-1) = -11/4 < 0,
h(1) = 5/4 > 0
より、
-1 < u₀ < 1.
よって、
det Hess[ g(u₀,u₀) ] > 0.
g(u₀,u₀) は g(x,y) の極値点であることが判る。
Hess[ g(u₀,u₀) ] の 第1行1列成分が 4(u₀²+1) > 0 であることから、
g(u₀,u₀) は極小値である。
開領域 (x,y) ∈ 実数² で定義された g(x,y) の
唯一の極小値であることから、g(u₀,u₀) は g(x,y) の最小値である。
g(x,y) ≧ g(u₀,u₀) = 2(u₀²+1)(u₀²+1) - 3(u₀+u₀)
= 2u₀⁴ + 4u₀² - 6u₀² + 2.
u₀³ + u₀ = 3/4 のとき 2u₀⁴ + 4u₀² - 6u₀² + 2 ≧ 0
であることを示せば目的を達したことになるが、これは成り立つだろうか?
F₁(u) = 2u⁴ + 4u² - 6u² + 2 と置く。
F₁(u) = (u³ + u - 3/4)(2u) + (-4u² - (3/2)u + 2) より
F₁(u₀) = -4u₀² - (3/2)u₀ + 2.
u₀³ + u₀ = 3/4 のとき -4u₀² - (3/2)u₀ + 2 ≧ 0 が示せればよい。
F₂(u) = -4u² - (3/2)u + 2 と置と、
F₂(u) = -4(u + 3/16)² + 137/64.
= -4(u + 3/16 + √134/8)(u + 3/16 - √134/8)
より
F₂(u) ≧ 0 ⇔ -3/16 - √134/8 ≦ u ≦ -3/16 + √134/8.
h( -3/16 - √134/8 ) = (-8691 - 819√67)/4096 < 0,
h( -3/16 + √134/8 ) = (-8691 - 819√67)/4096 > 0
と h(u) の単調性より。
h(u) = 0 となる唯一の u である u = u₀ は、
-3/16 - √134/8 < u₀ < -3/16 + √134/8 の範囲にある。
よって、F₂(u₀) ≧ 0.
これで題意は示されたことになるのだが、
熱帯夜の暑さを倍増する熱苦しい計算だったな。
なんか、チャラい解法は無いの?
No.5
- 回答日時:
これは、真面目に微分しないとアカンやつかなあ...
暑くてダルいんで、なるたけチャチャっと済ませたかったんだけど。
No.2 の間違い訂正としては、
-2 ≦ s ≦ 2 のとき s⁴/8 + s² - 3s + 2 ≧ 0 であることを
(前のような間違った理由ではなく)きちんと示せばよくて、
Mathematica先生によると
全実数 s に対して s⁴/8 + s² - 3s + 2 ≧ 0 であるらしい。 ←[1]
やってみよう。
f(s) = s⁴/8 + s² - 3s + 2 と置く。
f’(s) = s³/2 + 2s - 3,
f”(s) = (3/2)s² + 2 である。
全ての実数 s に対して f”(s) ≧ 0 + 2 > 0 であるから、
f’(s) は狭義単調増加。
lim[s→-∞] f’(s) = -∞, lim[s→+∞] f’(s) = +∞ と合わせると、
f’(s) はただひとつの零点を持つことが判る。
f’(s) = 0 ⇔ s = s₀ と置く。
f(s₀) は、f(s) の唯一の極小値であり、よって最小値である。
さて、f(s₀) ≧ 0 が成り立てば、[*] が示されたことになる。
f’(s₀) = s₀³/2 + 2s₀ - 3 = 0 の条件下に
f(s₀) = s₀⁴/8 + s₀² - 3s₀ + 2 ≧ 0 は言えるか?
f(s₀) = s₀⁴/8 + s₀² - 3s₀ + 2
= (s₀/4) (s₀³/2 + 2s₀ - 3) + (s₀²/2 - (9/4)s₀ + 2)
= (s₀/4) f’(s₀) + (1/2){ (s₀ - 9/4)² - 17/16 }
= (1/2){ s₀ - (9 - √17)/4 }{ s₀ - (9 + √17)/4 }
だから、
s₀ ≦ (9 - √17)/4 または s₀ ≧ (9 + √17)/4 であればよい。
f’( (9 - √17)/4 ) = (345 - 81√17)/32 > 0, ←[2]
f’(s) は単調増加だから、 f’(s) = 0 となる s = s₀ は
s₀ < (9 - √17)/4 である。
...できた。
こんどは真面目にきちんと示したけど、ちょっと息切れしたよ。
もっとサラっとやる方法が別にあるんだろうな...
[2] のところで、実際に代入せずに
f’(s) を (s²/2 - (9/4)s + 2) で割るくらいじゃあ
たいして楽にならないし。
No.4
- 回答日時:
> F(1.1,V)の極小ってV=0ではないのでは?
あらら、たしかに。って…うっかりツラレたけれども、
(x²+1)(y²+1)= x²y² + x² + y² + 1 ≧ x² + y² + 1
なんだから
x² + y² + 1≧ 3(x+y)/2
だけで足りるんじゃん。
F(U,V) = (U+V)² + (U-V)² + 1 - (3/2)U
= 2(U² + V²) + 1 - (3/2)U
と書けば極小がF(U,0)上にあるのは(今度は)間違いなしで
F(U,0) = 2U² - (3/2)U + 1
は判別式Dが負、そして
F(0,0)>0
No.3
- 回答日時:
[1] おなじみの変数変換
(x,y) = ((U + V), (U - V))
で
F(U,V) = ((U + V)²+1)((U - V)²+1) - (3/2)U
と書き換える。F(U,V)の極小がF(U,0)上にあることはすぐわかるから、
∀U(F(U,0) ≧ 0)
を示せばよし。
[2] 改めて
S(U) = (U²+1)²
T(U) = (3/2)U
とすると、明らかに
∀U(S(U) ≧ 1)
より
∀U(U < 2/3 ⇒ T(U) < S(U))
[3] 次に
S'(U) = dS/dU = 4(U²+1)U
T'(U) = dT/dU = 3/2
とおけば
S'(2/3) = 4((2/3)²+1)(2/3) > 4(2/3) > T'(2/3) = 3/2
S''(U) = dS'/dU > 0
より
∀U(U ≧ 2/3 ⇒ S'(U) > T'(U))
しかも
S(2/3) > T(2/3)
なので
∀U(U ≧ 2/3 ⇒ S(U) > T(U))
私の勘違いでしたら申し訳ありませんが、
F(1.1,V)の極小ってV=0ではないのでは?
https://www.wolframalpha.com/input?i=%28%281.1%2 …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
それもChatGPT!?と驚いた使用方法を教えてください
仕事やプライベートでも利用が浸透してきたChatGPTですが、こんなときに使うの!!?とびっくりしたり、これは画期的な有効活用だ!とうなった事例があれば教えてください!
-
歳とったな〜〜と思ったことは?
歳とったな〜〜〜、老いたな〜〜と思った具体的な瞬間はありますか?
-
みんなの【マイ・ベスト積読2024】を教えてください。
積読、ついついしちゃいませんか?そこでみなさんの 「2024年に買ったベスト積読」を聞きたいです。
-
人生でいちばんスベッた瞬間
誰しも、笑いをとろうとして失敗した経験があると思います。
-
集中するためにやっていること
家で仕事をしているのですが、布団をはじめ誘惑だらけでなかなか集中できません。
-
仕事をクビになり会社の門で憔悴していたらババアがいきなり話しかけてきました。 「この大きい袋に7で割
数学
-
隣り合う平方数の大きい数から小さい数を引いた差は必ず奇数の数列になるのですか? たまたま見つけたので
数学
-
こうなる理由が分かりません
数学
-
-
4
大変!!またまた我が家の新築の豪邸にネズミが出ました!ちょうどエクササイズ中だったので、フラフープを
数学
-
5
1の問題ですがBD直径より、角DABが90度になるのはわかるのですが、なぜ角CEBが90度になるかわ
数学
-
6
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
7
以下の問題で理解できないところがあります
数学
-
8
図形について
数学
-
9
√2が無理数であることの証明では、背理法以外には方法はないのでしょうか?
数学
-
10
4で割った余りが3でないときは図のように書いてもいいんですか?できればその根拠となるサイトを載せてい
数学
-
11
数学で、alphabetのxを、かけ算のマークとして利用できますか
数学
-
12
数学Aの平面図形の質問です。 他は自分で解けて解説を作りましたが、 二番目が解けないです。
数学
-
13
数学の約束記号の問題について教えてください。
数学
-
14
算数や数学の問題って、問題自体が間違えていることもあるので、出題者の意図を汲み取ってどのような解答を
数学
-
15
2の810乗はいくつですか?
数学
-
16
(2)の問題なのですが、解答には3列目に書かれた数が7m-4、5列目に書かれた数が7n-2と表す、と
数学
-
17
cos^2θ/tanθ=1でθを出すことはできますか? 出せるならどうやって出すのかなどを教えていた
数学
-
18
他のスレだとだいたいいるのに数学カテには「そんな中学生レヴェルの質問はするな」とかいうへそ曲がりがい
数学
-
19
高校数学 ドモルガンの法則についての質問です。 aまたはbではない=aかつbではない になるのは何故
数学
-
20
右のような図形の時、方程式がこうなるのはなぜですか
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・あなたの人生で一番ピンチに陥った瞬間は?
- ・初めて見た映画を教えてください!
- ・今の日本に期待することはなんですか?
- ・【大喜利】【投稿~1/31】『寿司』がテーマの本のタイトル
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
SQL文のwhere条件文で使う <> ...
-
1/∞=0は、なぜ?
-
数学で、項を指すとき、例えば2...
-
どうしてa>0, b>0のとき、a=b⇔a...
-
x/(x+1) = 1 - 1/(x+1)
-
Xの二乗-X+1=0 という2次方程式...
-
数IIの問題
-
高2恒等式
-
説明変数と被説明変数とは何で...
-
三次方程式の解と係数の関係で...
-
VBAでセルの右下をいちばん下ま...
-
大分大学 医学部過去問
-
√(-1)・√(-1)≠1 を証明し...
-
数2 この問題で、この3つの辺...
-
記号(イコールの上に三角形)...
-
1/7=1/m+1/nを満たすmとnの求め方
-
p,qを整数とし、f(x)=x^2+px+q...
-
プラチカIIICの問43の(1)について
-
(d^2θ/dt^2)×(dθ/dt)=1/2×d/dt×...
-
「別々のセルの3つの日付が同じ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1/∞=0は、なぜ?
-
SQL文のwhere条件文で使う <> ...
-
数学で、項を指すとき、例えば2...
-
Xの二乗-X+1=0 という2次方程式...
-
記号(イコールの上に三角形)...
-
exp(1/z)の原点のまわりでロー...
-
説明変数と被説明変数とは何で...
-
等式記号に似た三本線
-
x/(x+1) = 1 - 1/(x+1)
-
どうしてa>0, b>0のとき、a=b⇔a...
-
1/7=1/m+1/nを満たすmとnの求め方
-
数学における 等価と同値って同...
-
質問です。 a+b+c=0のとき、...
-
VBAでセルの右下をいちばん下ま...
-
a>b,c>dのとき、不等式ac+bd>ad...
-
“∠ABC”か、それとも“∠CBA”か
-
組み合わせの公式
-
高2恒等式
-
x^n+1をx^2+x+1で割った余りを...
-
解き方を教えてください
おすすめ情報