
No.14ベストアンサー
- 回答日時:
そしてそして、更に参考ありがとうございます。
読ませていただいたのですが、知識不足なために途中から理解しかねる内容でした…。
自分なりに気の済むまで考えてみたいと思います。
05-06-30 16:50
No.12
- 回答日時:
quadsさん、今晩は。
お問合せの件、
p(n,4)={(2n^3+6n^2-9(1-(-1)^n)n+144)/288}の出典は下記文献1です。但し、文献1では文献2から式を引用しているだけで
導出方法は文献2のほうにあるそうですが、私は見ていません。もし見ていたとしても差分方程式の高度な知識が必要みたいですから私にはとても歯が立ちません。
文献1 数え上げ組合せ論入門 日本評論者発行 成嶋弘著
文献2 数理科学 1991年9月号 離散数学とは何か 野崎昭弘著
それから、細かい話ですがNo7のお礼
>自然数nを分割する方法の総数を算出する式は無いようですが、
無いということが示されたわけではありません。今現在は見つかっていないが、今後見つかるかもしれません。
(つい、字面どおりに解釈しましたが、もしかすると
意図としては合っていたかもしれませんね)
回答ありがとうございます。
恐らく、私の方が貴方様より知識が乏しいので、そのような仰られ方だと私には導出は不可能に近いようですね…;
しかしながら、文献の方も参考にさせていただきます。
でも、文献2の方は読む機会があるのだろうか…。
p(n,k)の式すら途轍もなく難しい感じなのにp(n)の導出は…というような。。
「式が存在しない」という解釈はしていませんでしたが、「式の導出は非常に困難」という感じで書き込みました。
今はNo.10さんの方を参考にプログラムを組んだりしています…。
といっても書き出しているだけですが…。
何か法則を見つけられればと思います…w
05-06-29 22:30
No.11
- 回答日時:
下記NO 10でのANSWER補足、同サイトのp(20)まで計算した結果表
でこの表の1,5,8,9を足した23が答えです。
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10 p(n,r) n,r
11 42、10,1,5,8,9,7、―――
No.10
- 回答日時:
非常に関係あるところをみつけたのでお知らせします。
http://www.asahi-net.or.jp/~KC2H-MSM/excel/excel …
参考URL:http://www.asahi-net.or.jp/~KC2H-MSM/excel/excel …
誠にありがとうございます。
提示していただいたサイトを参考に実際に組み込んで計算してみました。
もっと考察してみたいと思います。
05-06-29 19:50
※適当に締め切りたいと思います。
No.9
- 回答日時:
10+0+0+0
9+1+0+0
8+2+0+0
8+1+1+0
7+3+0+0
7+2+1+0
7+1+1+1
6+4+0+0
6+3+1+0
6+2+2+0
6+2+1+1
の続き
5500
5410
5320
5311
5221
4420
4411
4330
4321
3331
3322
No.8
- 回答日時:
g(10,4)空箱なしで10を4つの箱に分けるの場合数
f(10,4)空箱ありで10を4つの箱に分けるの場合数
f(10,4)=g(10,4)+g(10,3)+g(10,2)+g(10,1)
g(n,1)=1
g(10,4)1=箱の数4で一番最小の箱の数が1 の場合数
g(10,4)2=同上で一番最小の箱の数が2 の場合数
g(10,4)3=同上で一番最小の箱の数が3の場合数 :ありえない
g(10,3)1=箱の数3で一番最小の箱の数が1の場合数
g(10,3)2=箱の数3で一番最小の箱の数が2の場合数
以下同様定義
すると
g(10,4)=g(10,4)1+g(10,4)2
g(10,3)=g(10,3)1+g(10,3)2+g(10,3)3
g(10,2)=g(10,2)1+g(10,2)2+g(10,2)3+g(10,2)4+g(10,2)5
g(10,1)=1
g(n,1)=1
関係式
g(10,n)m=f(10-nm、n-1)の関係が成立します。これはno1の人の考えを理解すればわかる。
後はエクセルなどでf、gの表を作っていけ一般的な場合もいくはづですが。
No.7
- 回答日時:
たびたびの訂正で申し訳ない。
先程の投稿の最終行を下記のように、訂正。
従って、求める答えはq(10,4)=p(10,4)+p(10,3)+p(10,2)+p(10,1)=9+8+5+1=23となる。
過去ログに同じ内容がありましたね…。失礼しました。
http://oshiete1.goo.ne.jp/kotaeru.php3?q=998567
自然数nを分割する方法の総数を算出する式は無いようですが、拡張させたりして考えてみたいと思います。
No.6
- 回答日時:
先程回答したものですが、問題を間違えましたので、再投稿です。
細かい部分は適当に省略しますが、意欲があれば自分でギャップを埋めてください。
自然数n、kに対し関数p、qを次のように定める。
p(n,k):自然数nのちょうどk個の自然数への分割の個数
q(n,k):自然数nのk個以下の自然数への分割の個数
このとき、定義から明らかに下記2式が成り立つ。
q(n,k)=p(n,1)+・・・+p(n,k)---(a)
p(n,k)=q(n-k,k)---(b)
従って、求める答えはp(10,4)=p(10,4)+p(10,3)+p(10,2)+p(10,1)=9+8+5+1=23となる。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
2次関数の応用
-
全員と同じグループを経験でき...
-
中学受験用の小5算数の問題です
-
3次元での点群に対する最小二...
-
おしどり遊び(テイトの飛び石...
-
Gnuplot 最小二乗フィッティン...
-
数学 3次関数の最小値・最大値...
-
数学の思考プロセスを理解する...
-
infの中にsupがあるとき
-
正の約数の個数が20個である最...
-
東大文系数学の問題です!
-
y=x^xの最小値
-
この問題ですが、 なぜt=4/5の...
-
高校数学1の問題集に、2次関数...
-
勝率の計算の仕方
-
至急!!二次関数について aは...
-
エクセルで(~以上,~以下)...
-
「無限の一つ前の数字は何?」...
-
「余年」の意味について教えて...
-
年代と年台・・・どちらが正し...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の思考プロセスを理解する...
-
全員と同じグループを経験でき...
-
至急!!二次関数について aは...
-
2次関数の応用
-
2進数のバイアス表現について
-
3次元での点群に対する最小二...
-
おしどり遊び(テイトの飛び石...
-
この問題教えてください!
-
なぜ、y"で上に凸、下に凸がわ...
-
座標平面上において、放物線y=x...
-
中学受験用の小5算数の問題です
-
2つの放物線間の最短距離
-
5406を13で割ったときの絶対値...
-
問題文は解答欄に載せます。 四...
-
1/x+1/y≦1/2 , 2<x,2<yのとき、...
-
Xの二次関数 y=x ²ーmx+m(mは...
-
この問題ですが、 なぜt=4/5の...
-
最小領域中心法と最小外接中心...
-
Gnuplot 最小二乗フィッティン...
-
数A 整数の性質 x.yを整数とす...
おすすめ情報