ここから質問投稿すると、最大4000ポイント当たる!!!! >>

アントラセンに紫外線を当ててもあまり発光しなかったのですが、ピレンやトリフェニレンはしっかり発光しました。なぜ、アントラセンは発光しにくいのですか?

A 回答 (2件)

縮合環型の芳香族炭化水素の場合、縮合環の数が増えるほど


(但し、縮合環の並びが直線型か「くの字」型かによる違いあり)、
HOMOとLUMOの間のエネルギー差は縮まります。
このエネルギー差が蛍光の波長のエネルギーに相当します。

アントラセンの場合、蛍光波長の極大は、確か紫外領域だったと思います。
つまり、目で見える蛍光は、その「脚」部分を見ていることになります。
このため、縮合数の大きいピレンやトリフェニレンの蛍光(→恐らく可視領域に
吸収極大)に比べると、肉眼で見える蛍光の強度は弱くなります。
(同時に、吸収領域もブロード化(広域化)したかと)

*実際には、上記の要因に加え、遷移確率の差もあったと思いますが、
 そちらの話は忘れてしまいましたので・・・(汗)
 (これも縮合数が大きい方が高くなったんじゃなかったかと思うのですが) 
    • good
    • 0
この回答へのお礼

ありがとうございます。確かにアントラセンの蛍光波長の極大は紫外領域でした。見えていないんではなくて見えにくいわけですね。とても参考になりました。

お礼日時:2005/12/12 22:17

大雑把な回答で申し訳ありませんが、それぞれの物質によって、吸収波長が異なっていますので、そのせいだと思います。



UVランプによって、紫外線の波長が決まっていると思います。紫外線の波長が異なれば結果も変わってくると思います。
    • good
    • 0
この回答へのお礼

質問に答えてくれてありがとうございます。アントラセンの吸収波長の観点から調べてみます。

お礼日時:2005/12/12 21:42

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q共役の長大=長波長シフト?

芳香族多環化合物で、π電子共役系が伸びることによってなぜHOMO-LUMO差が縮まるのかがわかりません。
π電子共役系が伸びるとUV吸収スペクトルの吸収極大は長波長シフトすることは実験的にわかります。そして、長波長シフトはHOMO-LUMO差が縮まることによって引き起こされることも理解できますが、なぜHOMO-LUMO差が縮まるのかがわかりません。
なるべく量子化学に踏み込まずに、単純に説明できる方がいらっしゃいましたらお願いします。

Aベストアンサー

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系の4つの原子の、π結合にあずかる4つのp軌道について、
それぞれ2個同士で軌道の重なりを考えます;


↑        ─ πab*           ─ πcd*
|      /   \           /   \  
|     /      \        /      \  
┼ 2p─          ─2p 2p─          ─2p
|     \      /        \      /
|      \   /           \   /
|         ─ πab           ─ πcd

   Ca         Cb    Cc         Cd
 (Ca~Cdはそれぞれ炭素原子、πab・πab*はそれぞれCa・Cbのp軌道の
  重なりで生じた結合性軌道・反結合性軌道。πcd・πcd*も同様)

次に、このπab・πab*とπcd・πcd*との間の軌道の重なりを考えます。
このとき、先程のp軌道同士の場合に比べると、軌道の重なりは小さいため、
エネルギー準位の分裂幅も小さくなります(因みに、重なり0→分裂幅0);

                 _π4
E            /       \
↑  πab* ─                ─ πcd*
|           \       /
|                ̄π3

|               _π2
|           /       \
|   πab ─               ─ πcd
|           \       /
                  ̄π1
   Ca         Cb    Cc         Cd

 (元のp軌道は省略、そのエネルギー準位は左端の『┼』で表示)


この結果、Ca~Cdの炭素上にπ1~π4の4つの軌道ができます。
元のp軌道よりエネルギー準位の低いπ1・π2が結合性軌道(π2がHOMO)、
高いπ3・π4が反結合性軌道(π3がLUMO)になります。
(軌道が重なると、「重なる前より安定な軌道」と「重なる前より不安定な軌道」が
 生じますが、このように、必ずしもそれが「結合性軌道と反結合性軌道となる」
 とは限りません;その前に大きな安定化を受けていれば、多少不安定化しても
 結合性軌道のまま、と)

このように考えれば、それぞれのHOMOとLUMOのエネルギー差は、CaとCbの2つの
π電子系で生じた時に比べ、Ca~Cdの4つのπ電子系の方が小さくなることが
理解していただけるのではないかと思います。


<余談>
このようにして共役系が延長していくと、軌道の重なりによる安定化幅はさらに小さく
なっていくため、「軌道」というよりは「電子帯(バンド)」というべきものになります。
また、HOMO-LUMO間のエネルギー差も縮小し、常温で励起が起こるようになります。
これによって、芳香族ポリマーや黒鉛などは電導性が生じているわけです。

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系...続きを読む

Q蛍光スペクトル

蛍光スペクトルと励起スペクトルについて教えてください

励起光の波長を変化させて蛍光の波長を固定して測定したものが励起スペクトルで、励起光を固定して蛍光の波長を測定したものが蛍光スペクトルだというのはわかるのですが、2つがどういうものかということがよくわかりません。

教科書のスペクトルと見ると、横軸は波数で蛍光の波長だと、わかるのですが、励起光の波長はどこに表されているのでしょうか?

またどうして励起スペクトルと蛍光スペクトルが鏡像関係にあるのかもわかりません。

あまり難しい言葉や数式は使わずわかりやすく回答してもらえれば幸いです。

Aベストアンサー

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギーの低い状態へ移動する)を経て励起状態振動基底状態へ移動します。そして、図では緑の矢印で示されている蛍光が発光します。

質問者様のおっしゃる励起スペクトルはこの青色の矢印の波長を変えながら緑色の矢印すべてひっくるめた蛍光全体の強度を測ります。このとき、電子励起状態の振動基底状態や振動励起状態(図では太い横線が各電子状態の振動基底状態を示し、その上の細い横線がその電子状態の振動励起状態を示しています。)へ励起されますので、励起光の波長は電子励起状態の各振動状態のエネルギーに対応したものとなります。溶液などでは、振動励起状態へ励起してもすぐにその電子状態の振動基底状態へ緩和されますので、緑の矢印全体の強度というのは、励起された分子の数に比例します。つまり、励起スペクトルは分子の吸収スペクトルに比例したようなスペクトルが得られるわけです。(もちろん、いろいろ例外はありますが)

さて一方、質問者様のおっしゃる蛍光スペクトルは緑色の矢印をさらに分光器などで分散させて矢印一本一本を別々の波長として観測するスペクトルです。つまり、波長は電子励起状態の振動基底状態から電子基底状態の振動励起状態のエネルギーに対応したものとなります。

蛍光スペクトルにおいて、励起光の波長がわからないと言うことですが、溶液などでは励起分子はすぐに電子励起振動基底状態へ緩和しますので、励起光の波長を変えて励起する分子の振動状態を変えても、蛍光スペクトルはすべて電子励起振動基底状態からのもので、波長とその強度比は変わりません(励起スペクトルのように全体の強度はかわりますが)。このような場合、励起光の波長を書かないことが多いです。

図でもわかるように、励起光の波長と蛍光発光の波長はは電子励起振動基底状態のエネルギーをはさんで、励起光は電子励起状態の振動エネルギーだけ高いエネルギー(短い波長)になり蛍光は電子基底状態の振動エネルギーだけ引いエネルギー(長い波長)になり、それぞれの振動エネルギー構造が似ていれば、鏡像のような形になることがわかります。

以上、「励起光が書いていない」ということから類推して、すべて溶液の蛍光測定と仮定してお答えしました。気体や分子線を使ったLIFではちょっと話がかわってきますので、その点はご留意ください。

参考URL:http://www.jp.jobinyvon.horiba.com/product_j/spex/principle/index.htm#01

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギ...続きを読む

Q吸収と蛍光の測定について

今研究で吸収や蛍光の測定をしているのですが、毎回同じ試薬を用いても前回と同じ吸光度や蛍光強度を得られません。どうしたらよいのでしょうか?セルも毎回洗浄してきれいにしてるつもりですが、なにか良いアイデアを下さい。お願いします。

Aベストアンサー

pyreneのモル吸光係数は54,000M^-1cm^-1ですね.時定数τ=130ns,
励起極大=342nm,発光極大=386nm(ex480nm)です.

まず,ピレンやナフタレン等の芳香族化合物はExcimer形成による
発光帯と単分子からの発光帯に分かれますね.
ピレンの例を取って考えると,単分子からの発光は386nmを発光極大
とするピークがあり,480nmにExcimerからの発光帯があります.
386nmの強度と480nmの強度の比はそのたびごとに異なりますか?
濃度が希薄なときにはExcimer形成よりも単両体からの発光が支配的になり,
濃厚な場合には逆になります.Excimer形成は分子の衝突頻度によって
決まるものですから,濃度に対して依存性がありますが,同濃度では
ほぼ同じ値が得られるはずです.

それから,一つ気になったことは・・・ピレンってヘキサンにそんなに
溶けますか?私の記憶ではあまり溶解性の良い試薬ではなかったと思いますが?

もしかしたら,散乱光を検出しているのでは? フィルタを通してから測定する
とか,試しにアセトンやエタノールとかを溶媒として測定してみては如何でしょ
うか?

pyreneのモル吸光係数は54,000M^-1cm^-1ですね.時定数τ=130ns,
励起極大=342nm,発光極大=386nm(ex480nm)です.

まず,ピレンやナフタレン等の芳香族化合物はExcimer形成による
発光帯と単分子からの発光帯に分かれますね.
ピレンの例を取って考えると,単分子からの発光は386nmを発光極大
とするピークがあり,480nmにExcimerからの発光帯があります.
386nmの強度と480nmの強度の比はそのたびごとに異なりますか?
濃度が希薄なときにはExcimer形成よりも単両体からの発光が支配的になり,
...続きを読む

QTLCスポットのUV発色について

TLCを使った実験で、展開後、スポットを確認するために、紫外線ランプを当てますよね。私の実験室では、長波366nm、短波254nmのランプを使います。

そのときの発色の原理について、質問があります。

TLCプレート(silica gel 60 F254)を使っているのですが、プレート上に展開された物質が、長波でも短波でも反応する場合、長波では紫外線を当てるとその物質が蛍光発色し、短波では、その部分だけ消光します。
共役二重結合がある場合、紫外線に反応すると理解していたのですが、長波と短波を当てたときに、長波だけ反応する物質、短波だけ反応する物質があり,なぜこのような結果になるのか不思議です。
自分なりに考えてみたところ、「短波で消光するのは、シリカゲルに蛍光物質がぬってあって、その上に展開した物質が覆うように存在するからであり、別に共役二重結合を持たなくてもプレート上に展開された物質はすべて確認できるのかな。長波で反応する場合は、共役二重結合によって紫外線を吸収した後、別の波長として放出し、蛍光物質として検出できるのかな。」と思いましたが、よくわかりません。
どなたか、ご存知の方、教えてはいただけないでしょうか。よろしくお願いいたします。

TLCを使った実験で、展開後、スポットを確認するために、紫外線ランプを当てますよね。私の実験室では、長波366nm、短波254nmのランプを使います。

そのときの発色の原理について、質問があります。

TLCプレート(silica gel 60 F254)を使っているのですが、プレート上に展開された物質が、長波でも短波でも反応する場合、長波では紫外線を当てるとその物質が蛍光発色し、短波では、その部分だけ消光します。
共役二重結合がある場合、紫外線に反応すると理解していたのですが、長波と短波を当てたときに...続きを読む

Aベストアンサー

共役二重結合のような電子が励起されやすい状態にある化合物は強いエネルギーを持った短波長の紫外線によって励起され発光ではなく熱となって基底状態へともどります。つまり紫外線を吸収するので見た目はその部分だけ消光します。当然全ての物質が吸収するわけではなく、展開後に溶媒を減圧したりして完全に乾かさなくてもUVで検出されないことからも分かります。長波長の紫外線で光る物質は長波長の波長で励起されて可視光を放つものです、エネルギーが弱いためにどんな物質でもというわけではありません。光る物質の多くは長い共役系を持っているなど弱いエネルギーでも励起できそうな物ばかりですよね。
ちなみにシリカゲルのUV-Visスペクトルを測定すると260nm以下あたりから吸収域を持っていることが分かります。

Q無水硫酸ナトリウムによる脱水

 有機溶媒に無水硫酸ナトリウムを加え脱水すえう方法について質問があります。
 500mlの溶媒に対して無水硫酸ナトリウムを加えた後、何時間ぐらいで脱水は終わるのでしょうか?
 また、どうやって脱水が終わったことを確認するのでしょうか?
 どなたか分かる方よろしくお願いしますm(_ _)m

Aベストアンサー

硫酸ナトリウムは、脱水容量が大きいけれど、脱水速度が遅いとされています。

これまでの経験では、乾燥は一昼夜とか、昼休み中、あるいは乾燥中、器具の洗い物をするとかで、時間は掛けてました。少なくとも(加える量にもよりますが)、30分から1時間は掛けたら安心ですね。

ついでに他の乾燥剤の特徴も書いておきます。

CaCl2:アルコール、ケトン、アミン、フェノールは不可
MgSO4:やや酸性 (MgSO4・7H2O)
CaSO4:脱水速度速い、容量小さい (CaSO4・1/2H2O)
Na2SO4:脱水速度遅い、容量大きい (Na2SO4・10H2O)

終点は確認しませんね!

QMS ラジカルカチオンの定義について

MSでラジカルカチオンという物質が出てきます
この原子はどんな電子配置をしているのでしょうか
またラジカルアニオンはありますか あればどのようなものでしょうか 価電子体について教えてください
通常のアニオン カチオンはわかるのですが
ラジカルカチオンには添え字に+と黒丸(電子一個分)
の意味がわからないので宜しくお願いします

Aベストアンサー

 基本的には #1 さんが回答されている事で良いですが,少し補足いたします。

> MSでラジカルカチオンという物質が出てきます
> この原子はどんな電子配置をしているのでしょうか

 ラジカルカチオンやラジカルアニオンですから,EI でのイオン化ですね。EI では電子を試料にぶつけて試料中の分子の電子を1個弾き飛ばします。もちろん,ぶつけた電子も弾き飛ばされて飛んでいきます。結果,試料分子は電子1個少ない状態になります。

 通常分子は偶数個の電子が2個づつ対になって電荷を持たない状態で存在していますので,電子が1個減ると不対電子(ラジカル)が1個出来ます。この事を「・」で示しています。

 また,電荷を持たない中性の状態から電子(電荷:-1)が減りますから,後には +1 の電荷を持ったイオンが残ります。この事を「+」で示しています。

> ラジカルアニオンはありますか

 上記のように,EI イオン化では高エネルギーの電子を試料分子にぶつけるためにアニオンは出来難いのですが,中にはぶつけた電子が弾き飛ばされずに分子に捕獲されてしまう場合があります。

 この場合は,電子が1個増えますから「アニオン」が出来ますし,捕獲された電子は不対電子になりますから「ラジカル」になります。つまり,「ラジカルアニオン」です。

> あればどのようなものでしょうか

 上記のように「ラジカルアニオン」が生じるには電子を取り込みアニオンになる必要があります。そのため,電子を取り込み易い(還元され易い)分子やアニオンが安定な分子がラジカルアニオンを与える傾向があります。

 還元され易い分子の代表はキノンです。安定なアニオンを与えるのはカルボン酸や含ハロゲン化合物です。ただ,後者の場合は「還元=脱ハロゲン化」になるでしょうから分子イオン「M・-」は検出困難と思います。

 基本的には #1 さんが回答されている事で良いですが,少し補足いたします。

> MSでラジカルカチオンという物質が出てきます
> この原子はどんな電子配置をしているのでしょうか

 ラジカルカチオンやラジカルアニオンですから,EI でのイオン化ですね。EI では電子を試料にぶつけて試料中の分子の電子を1個弾き飛ばします。もちろん,ぶつけた電子も弾き飛ばされて飛んでいきます。結果,試料分子は電子1個少ない状態になります。

 通常分子は偶数個の電子が2個づつ対になって電荷を持たない状態...続きを読む

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Qヨウ素による薄層クロマトグラフィーの呈色原理

薄層クロマトグラフィーの呈色に
ヨウ素蒸気をよく使いますが、
これはどのような原理で色がつくのでしょうか?
特定の官能基と反応する他の呈色試薬と違い、
Wikipediaによると
「ほぼ全ての官能基の呈色に有効」だそうですが、
有機化合物全般にヨウ素分子が直接結合する…
わけではないですよね?
教えて下さい。宜しくお願いします。

Aベストアンサー

#6の回答について

>Most organic compounds will absorb iodine or react with it.

ほとんどの有機化合物はヨウ素を吸収するとはどのような意味なのでしょうか?
absorb(吸収)ではなくadsorb(吸着)の誤りということはありませんか。

質問者が勘違いされるといけないので補足説明しますが、ヨウ素が有機化合物と反応した場合(例えば二重結合や活性水素との反応)は、有機ヨウ素化合物となりますので当然ヨウ素の色は無くなってしまいますので、そのことによって発色はしません。
ヨウ素によって酸化された場合も、ヨウ化物イオンとなりヨウ素の色はなくなります。
また、アミン類とは、一定以上の温度では強いコンプレックスを作成する可能性がありますが、実際は相互作用(結合ではない)で有機化合物の周りにヨウ素が補足されているような状態だと思います。
いずれにしろ、ヨウ素発色は有機化合物とヨウ素の相互作用によるもので、反応や結合では説明できないと思います(もちろん還元性物質との反応や活性な多重結合への付加反応は起こりますが)。

#6の回答について

>Most organic compounds will absorb iodine or react with it.

ほとんどの有機化合物はヨウ素を吸収するとはどのような意味なのでしょうか?
absorb(吸収)ではなくadsorb(吸着)の誤りということはありませんか。

質問者が勘違いされるといけないので補足説明しますが、ヨウ素が有機化合物と反応した場合(例えば二重結合や活性水素との反応)は、有機ヨウ素化合物となりますので当然ヨウ素の色は無くなってしまいますので、そのことによって発色はしません。
ヨウ素によって酸...続きを読む

Qスペクトルについて

アントラセンの吸収スペクトルと蛍光スペクトルの波長ー吸光度のグラフを作成したところ、鏡像関係になりました。どうしてでしょうか?

Aベストアンサー

蛍光収率が良いと鏡像関係になることが多いです。特に振動成分が見える場合「嬉しくなっちゃう」。
基底状態から励起状態へのπ-π*の励起が起きるとき、「電子基底状態(π)の振動基底状態」から「電子励起状態(π*)の振動基底状態と振動励起状態」への遷移が起こるため、振動構造が見えます。
この場合π*の振動励起状態は振動基底状態より高エネルギーなので短波長側に何本かの振動構造が見えることになります。
蛍光スペクトル、つまり発光による緩和の場合、「電子励起状態(π*)の基底状態」から「電子基底状態(π)の振動基底状態と振動励起状態」への遷移が見えます。
この場合πの振動励起状態も振動励起状態よりエネルギーは高いですからπの振動基底状態への発光より小さなエネルギーが放出されることになり、長波長側に何本かの振動構造が見えることになります。
特にアントラセンのように対称性が高い分子だとπとπ*での振動励起状態の構造は似ているため一見すると「鏡像」のような関係になります。でも、一般的には鏡像関係になる「保証」はありません。

Q再結晶の原理

大学の実験でサリチル酸と無水酢酸からアセチルサリチル酸を生成する実験をしました。
サリチル酸に無水酢酸と濃硫酸を加え、60℃のお湯で15分間加熱し室温まで冷却し水を加え氷水につけてさらに冷却し、軽く攪拌しながら結晶を析出させ、
それを再結晶させたのですが、恥ずかしながらこの再結晶の原理がわかりません。

再結晶の原理をわかりやすく教えてもらえませんか?

Aベストアンサー

溶解度の温度による差を利用しています。
ほとんどの物質は温度が上がると溶媒への溶解度が上がります。そこで温度を上げて粗製物を溶かし、次いでこれを高温に保ちながら濾過して不溶物を除き、次に冷却して主成分を結晶として得ます。
着色等が見られるときは加熱状態で少量の活性炭を加え不純物を吸着させてから熱時濾過します。活性炭の粒度が小さ過ぎたり濾紙が粗過ぎたりすると活性炭が濾液に混ざるので注意。
一般にかなり純度が高くないと再結晶しても別れない組み合わせがあります。


人気Q&Aランキング