y=2sinχ+cos2χ の最大値と最小値を求めよ。って問題で、自分は
y=2sinχ+(1-2sin^2χ)
 =-2sin^2χ+2sinχ+1  にして
sinχ=(1±√3)/2       を求める。  ―――★

ここの値が最大値と最小値なの?それとも
-1≦sinχ≦1より
(1)sinχ=-1代入して  y=-3
(2)sinχ=1 代入して  y=1     ―――☆

★と☆より 最大値(1+√3)/2  最小値-3    ってこと?

それとも見当違いですか?
教えてください。

今気付いたら、★のところまでしか求めてないから、見当違いっぽいですね!?(y=~にしてないし・・・。)
そんなわけで、正答を・・・。 m(__)m

このQ&Aに関連する最新のQ&A

A 回答 (5件)

回答を求めてるみたいなので一応全部書きますね


下の続き~
y=-2t^2+2t+1 -1≦t≦1・・・・(1)
ここで頂点がわかる形にもってきます~!

y=-2(t-2/1)+2/3・・・・(2)

(1)と(2)を考慮してグラフを書きますね
すると
最大値t=2/1のときで2/3
最小値t=-1のときで-3となります

グラフはここにかけないのでごめんなさい~m(_ _)m

以上
竜千士 翔でした~☆
    • good
    • 0
この回答へのお礼

ありがとうございました。
某漫画に似たような名前を見たことがあるのですが・・・。

お礼日時:2002/02/07 18:02

hikaru_macです。


4人のかたが解答しているので、私はちょっと関係有るかもしれないアドバイスを、、、。

「y=2sinχ+cos2χ の最大値と最小値を求めよ。」ってことで
y=-2((sinχ)^2)+2sinχ+1にしてるね。

そこからの事なんだけど、
これの最大値を考えるときに、まず
xが変わればsin(x)がかわるね。そしてsin(x)が変わるとyもかわる。

もちっとくわしく考えてみる。

xがいろいろに変われば、sin(x)もいろいろに変わるか、、。
いや、実はsin(x)は1-から1までの間しか変わらない。
っで、いま、yの最大値と最小値が知りたいから
sin(x)がいくらの時にyがいくらなかを考える。
sin(x)と書く代わりにtと書くと、もとの式は
y=-2t^2+2t+1
である。

重要なのは、tはsin(x)のことだから、tも-1から1の間だよってこと。
それで、この「y=-2t^2+2t+1」はほかの4人がおっしゃるように、tの二次関数です。

ということで、縦軸y、横軸tのグラフを書いてみると、
どうやら
t=-1のとき   y=-3で最小
t=1/2のとき  y=3/2で最大
らしい。

そして、最後。
t=1っていうのはsin(x)=1ってこと。
t=1/2っていうのはsin(x)=1/2ってこと。
ってことはつまり
sin(x)=-1のとき   y=-3でyは最小値になる
sin(x)=1/2のとき  y=3/2でyは最大値になる
ってこと。

それで、sin(x)=-1とかsin(x)=1/2になってるときに
いったいxはいくらなのか?
これはまぁ、三角関数のところの教科書を読んで下さいな。
または後でしつもんしてくださいな。
かんたんに、xは何度かわかります。πを使ってラジアンという単位でこたえなきゃならないときもあります。

そんなかんじで、この問題は解けるんじゃないでしょうか?


(ここから下はわかんなくてもいいけど)
ところで
sin(x)=-1とかsin(x)=1/2ってのは
-1から1までのあいだなので、だいじょうぶなんだけど、
たとえば、t=3の時にyが最大、、なんてなっても、
tはsin(x)のことだから、sin(x)が3なになるはずがないから
こまってしまうね。
実はyとtのグラフを書く時に、t(横軸)は-1から1までしか
書かないようにしなくちゃならないんです。
そうやてグラフを書けば、最大値も最小値もちゃんと-1から1までの
間になるんです。

--------終わり
    • good
    • 0
この回答へのお礼

理解力が欠けているのですが「最後まで確認しろ!!」ってことですよね!?(全然違う気もしますが・・・。)
とにもかくにも、ありがとうございました。

お礼日時:2002/02/07 17:55

> sinχ=(1±√3)/2       を求める



ん?,y の最大値と最小値を求めるんですよね.
こりゃ,
-2sin^2χ+2sinχ+1 = 0
を解いたんでしょ?
欲しいのは,y の最大値最小値であって,
y がゼロになる話ではないですよね.

sinχ = t とおいて
y = -2t^2 + 2t + 1
 = -2{t-(1/2)}^2 + (3/2)
ですから,この関数の -1≦t≦1 での最大値最小値を出せばいいわけです.
グラフ書いてみれば一発ですよ.
    • good
    • 0
この回答へのお礼

ありがとうございました!!
とけました。

お礼日時:2002/02/07 18:00

異なる三角関数,異なる偏角をすべて統一するところまではできていますね.


あとは,実は二次関数の問題なんです!


y=-2sin^2x+2sinx+1
において,sinx=t(-1≦t≦1)とおくと,

y=-2t^2+2t+1

となりますよね.あら,これって二次関数じゃないですか!!
あとはこの式を平方完成してy-tグラフを書いて,tが-1から1の範囲でyの最大値,最小値を求めて
あげればよろしいわけです.


y=-2(t-1/2)^2+3/2

というわけで,
t=-1のとき,つまりx=-90°のとき,y=-3で最小
t=1/2のとき,つまりx=30°,150°のとき,y=3/2で最大

あってますかね?ちなみに,
3/2>(1+√3)/2>1ですので,3/2が最大値として適していましょう.

ただし!要注意は,与えられた式はsin,cos両方を含んでいるので,以上で求められたxを最初の式に代入して,本当にあっているか確かめるようにしましょう.この場合は,どの角度の場合も適しているようですが.
    • good
    • 0
この回答へのお礼

ありがとうございました。
解けました。

お礼日時:2002/02/07 17:56

えっと途中まで書きますね


y=2sinχ+cos2χ の最大値と最小値を求めよ。って問題で、自分は
y=2sinχ+(1-2sin^2χ)
 =-2sin^2χ+2sinχ+1  にして

ここまではいいと思います
それでわかりやすいようにsinx=tとおきますね

sinx=tと置く-1≦t≦1

そして
y=-2t^2+2t+1となります

これでわかるかもしれませんけど
具体的にいうと最大値は頂点がわかる形にしてときますね
最小値はグラフを書いて
-1≦t≦1の範囲で考えます

以上
竜千士 翔でした~☆
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q∬sin(x+y)dxdy;0≦x,0≦y,x^2+y^2≦1

∬_S sin(x+y)dxdyの解を求めよ。
ただしS:={(x,y);x≧0,y≧0,x^2+y^2≦1}とする。

と言う問題ですが、検索したところ類似問題の答えを見つけました。
以下をご覧ください。
--------------------------------------------------------------
この先生http://www.math.meiji.ac.jp/new/35.htmlの
http://www.math.meiji.ac.jp/~mk/lecture/kaisekigairon-2/exercise1.pdf
の中の2.の(5)の答えは"2"になっております。
------------------------------------------------
さて、ちょっとややこしいのですが、上記二者は全く同じ問題ではないので、こことは別なあるご相談サイトで前者の問題
∬_S sin(x+y)dxdy;0≦x,0≦y,x^2+y^2≦1・・・・・について質問したところ、次のような回答がありました。

その回答の抜粋;”私も積分値が何なのかは知りませんが、積分領域の S の面積がπ/4 で、sin(x+y)≦1 なので積分値はπ/4 以下になります。”
あとで気づいたのですが、この記述は、
http://www.math.meiji.ac.jp/~mk/lecture/kaisekigairon-2/exercise1.pdf
の答えと矛盾するような気がしますが、どうでしょうか?
当方独学の部分が多いため、わからなくなって困っております。宜しくお願い致します。

∬_S sin(x+y)dxdyの解を求めよ。
ただしS:={(x,y);x≧0,y≧0,x^2+y^2≦1}とする。

と言う問題ですが、検索したところ類似問題の答えを見つけました。
以下をご覧ください。
--------------------------------------------------------------
この先生http://www.math.meiji.ac.jp/new/35.htmlの
http://www.math.meiji.ac.jp/~mk/lecture/kaisekigairon-2/exercise1.pdf
の中の2.の(5)の答えは"2"になっております。
------------------------------------------------
さて、ちょっとややこしいのです...続きを読む

Aベストアンサー

∫[S] sin(x)cos(y)+cos(x)sin(y)dxdy
=∫[0,1]{sin(x)∫[0,√(1-x^2)]cos(y)dy+cos(x)∫[0,√(1-x^2)]sin(y)dy}dx
=∫[0,1]{sin(x)sin√(1-x^2)-cos(x)[cos√(1-x^2)-1]}dx
=∫[0,1]cos(x)dx-∫[0,1] cos{x+√(1-x^2)}dx
=sin(1)-∫[0,1] cos{x+√(1-x^2)}dx …(◆)
≒0.8414709848-0.2793082485
≒0.5621627363
(◆)の第二項の定積分は解析的に行えませんので数値計算(ガウス数値積分法その他→参考URL参照)で計算します。

積分そのものは以下のサイトで数値積分してくれます。
ttp://www10.wolframalpha.com/input/?i=integrate%28integrate%28sin%28x%2By%29%2Cy%2C0%2Csqrt%281-x%5E2%29%29%2Cx%2C0%2C1%29
integrate(integrate(sin(x+y),y,0,sqrt(1-x^2)),x,0,1)

参考URL:http://homepage3.nifty.com/gakuyu/suti/sekibun/gauss-int.html

∫[S] sin(x)cos(y)+cos(x)sin(y)dxdy
=∫[0,1]{sin(x)∫[0,√(1-x^2)]cos(y)dy+cos(x)∫[0,√(1-x^2)]sin(y)dy}dx
=∫[0,1]{sin(x)sin√(1-x^2)-cos(x)[cos√(1-x^2)-1]}dx
=∫[0,1]cos(x)dx-∫[0,1] cos{x+√(1-x^2)}dx
=sin(1)-∫[0,1] cos{x+√(1-x^2)}dx …(◆)
≒0.8414709848-0.2793082485
≒0.5621627363
(◆)の第二項の定積分は解析的に行えませんので数値計算(ガウス数値積分法その他→参考URL参照)で計算します。

積分そのものは以下のサイトで数値積分してくれます。
ttp://www10.wolframalpha.com/input/?i...続きを読む

QX-Y平面の領域D={(x,y)|0≦x≦1,x-1≦y≦x+1}を、

X-Y平面の領域D={(x,y)|0≦x≦1,x-1≦y≦x+1}を、x/y=u,y=vとして、U-V平面での領域で表したいのですが、どうにもできません。誰か教えてください。

Aベストアンサー

定義域をどう変換したら良いかわからないという意味の質問と捉えるならば、(<、>の下の等号は省略)
0<x<1 より両辺を足したり引いたりすれば、
1<x+1<2
-1<x-1<0
よってx-1<y<x+1 は -1<y<2 となり、 -1<v<2
また、x/y=uより0<x<1は0<uy<1
これから両辺に(題意としてy=v=0は定義されないので)1/yを掛ければ
0<u<1/y=1/v となりvの定義域から1/vの定義域の上限は無限大なので
0<uのみとなる。
結果、-1<v<2、0<uが領域の変換後の回答です。


 

Qx^2+2xy+4y^2=9を満たし、その時のx-2yの最大値と最小値

x^2+2xy+4y^2=9を満たし、その時のx-2yの最大値と最小値を求める問題です…
解説お願いします(T-T)

Aベストアンサー

1) x-2y=k とおき、x^2+2xy+4y^2=9 に代入して、xまたはyを消去します。
  ここでは 2y=x-k として xを消去します。
   x^2+x(x-k)+(x-k)^2=9
  ⇔3x^2-3kx+k^2-9=0  ・・・・★

2) 「x^2+2xy+4y^2=9を満たし、その時のx-2yの最大値と最小値を求める問題」は
  「曲線x^2+2xy+4y^2=9と直線x-2y=kが共有点を持つときのkの最大値・最小値を求める問題」
と同じです。
  ですので、1)で得たxの2次方程式が実数解をもつことが「曲線x^2+2xy+4y^2=9と直線x-2y=kが共有点を持つこと」と同値です。
  従って、2次方程式★の判別式から
   9k^2-12(k^2-9)≧0
  ⇔k^2≦36
  ∴-6≦k≦6
となります。
 ここから 最大値 6、最小値-6を得ます。

3) 最大・最小となるx、yの値を求めます。
  k=±6 のとき 式★の2次方程式は (x干3)^2=0 となりますので、その解は x=±3 となります。(複号同順)
 また、yの値は k=±6, x=±3 のとき y=(x-k)/2=±(3-6)/2=干3/2 となります。(複号同順)

 従って、最大値は(x,y)=(3,-3/2)のとき 6 で、最小値は(x,y)=(-3,3/2)のとき -6 となります。

1) x-2y=k とおき、x^2+2xy+4y^2=9 に代入して、xまたはyを消去します。
  ここでは 2y=x-k として xを消去します。
   x^2+x(x-k)+(x-k)^2=9
  ⇔3x^2-3kx+k^2-9=0  ・・・・★

2) 「x^2+2xy+4y^2=9を満たし、その時のx-2yの最大値と最小値を求める問題」は
  「曲線x^2+2xy+4y^2=9と直線x-2y=kが共有点を持つときのkの最大値・最小値を求める問題」
と同じです。
  ですので、1)で得たxの2次方程式が実数解をもつことが「曲線x^2+2xy+4y^2=9と直線x-2y=kが共有点を持つこと」と同値です。...続きを読む

Qx,yは実数x^2+y^2=36,y≧0を満たす時、(□-□√□)/5≦(y-3)/(x-9)≦□を埋めよ

こんばんわ。宜しくお願い致します。

[問]
x,yは実数x^2+y^2=36,y≧0を満たす時、
(□-□√□)/5≦(y-3)/(x-9)≦□
を埋めよ。

という問題で困ってます。
(y-3)/(x-9)=k
とおいてから
y=kx-9k+3
から先に進めません。
何か良い方法がありましたらお教え下さい。

Aベストアンサー

x^2+y^2=36,y≧0 は、原点中心の半径6の円の上半分
(y-3)/(x-9)=k
とおくと
(y-3)=k(x-9) は、(9,3)を通る直線
この直線が半円と共有点を持つときの傾きkの範囲を求めるということ。
最大値はすぐわかりそう。
「最小値は直線と原点の距離が6」という条件でやったらいいと思います。

Qy=sinx+cosxの最大値と最小値を求める方法を教えてください

合成して、y=√2*sin(x+π/4)にするところまでは、いけました。

回答おまちしております。

Aベストアンサー

sin(x+π/4)の最大値は1最小値は-1です。
よって、、、


人気Q&Aランキング

おすすめ情報