毎日毎日暑すぎて平方完成する気も起きません。
ギリギリの体力で実数x,yについて
2(x²+1)(y²+1)≧3(x+y)
が成り立つことを示そうとしています。
左辺-右辺をxの二次式と見て平方完成する…のでしょうか?
でもこのクソ暑いのにそんなことやってられませんよね?
残されたyの式も想像しただけで暑苦しい。
読んでいるだけで汗がひいていくような、爽やかな気分にさせてくれるような、
酷暑の真っ只中、一服の清涼剤となるような証明はございませんでしょうか?
No.10ベストアンサー
- 回答日時:
No.8のつづき、
1変数にしてもだいぶむづかしいですね、
色々考えてつぎのようにしました:
No.8から
f/2=(x²+1)²-3xにおいてx<0ならあきらかにf/2>0なので
x>0の時を考えると、次のように因数分解できる、
(x²+1)²-3x=[x²+1-√(3x)][x²+1+√(3x)]
右辺の後ろのかっこは>0だから前のかっこ内をgとし
√x=zとすれば
g=z⁴+1-√3z=z⁴-z²+z²-√3z+1=(z²-1/2)²+(z-√3/2)²>0
となってx>0でもf/2>0が証明されます。
No.8
- 回答日時:
f=2(x²+1)(y²+1)-3(x+y)が最小値をとるx、yの関係は
ðf//ðx=0、ðf/ðy=0から出る。
第1式を1+x²倍、第2式を1+y²倍して辺々引いて4で割ると
(x-y)(x²y²+x²-3/4x+y²-3/4y+1)=0 となり
左辺の後ろのかっこ内はその第2項以降を平方完成すれば>0がわかるから
x-y=0、x=y なのでfの式でy=xとおいて
f=2[(x²+1)²-3x]の最小値を調べることに帰着すると思うけど
いかが?
No.7
- 回答日時:
f=2(x²+1)(y²+1)-3(x+y)
とする
f
=2(x²+1)(y²+1)-3(x+y)
=2(x²+1)(y-3/{4(x²+1)})²+{16(x²+1)²-9-24x(x²+1)}/{8(x²+1)}
=2(x²+1)(y-3/{4(x²+1)})²+(16x^4-24x^3+32x²-24x+7)/{8(x²+1)}
≧(16x^4-24x^3+32x²-24x+7)/{8(x²+1)}
だから
g(x)=16x^4-24x^3+32x²-24x+7
とすると
f≧g(x)/{8(x²+1)}
g'(x)=8(8x^3-9x²+8x-3)
g"(x)=16(12(x-3/8)x²+37/16)>0
だから
g'(x)は単調増加
g'(0)=-24<0<32=g'(1)
g'(a)=8(8a^3-9a²+8a-3)=0となるような0<a<1がある
a≒0.5484122…
x<a のとき g'(x)<0 だから g(x)は減少
x>a のとき g'(x)>0 だから g(x)は増加
だから
x=a のときg(x)は最小となる
g(x)≧g(a)
最小値
g(a)
=16a^4-24a^3+32a²-24a+7
=(8a^3-9a²+8a-3)(2a-3/4)+37a²/4-12a+19/4
=(37a²-48a+19)/4
>0.951
>0
だから
g(x)≧g(a)>0
だから
f≧g(x)/{8(x²+1)}>0
No.6
- 回答日時:
素朴に、2変数関数の値域で攻めてみようか。
g(x,y) = 2(x²+1)(y²+1) - 3(x+y) と置くと、
∇g(x,y) = (∂g/∂x, ∂g/∂y) = ( 2(2x)(y²+1) - 3, 2(x²+1)(2y) - 3 ).
∇g(x,y) = (0,0) ⇔ x(y²+1) = 3/4 = (x²+1)y.
この式を満たす (x,y) が g(x,y) の極値点の候補となるから...
ああ、これはやはり、 x = u + v, y = u - v の置換が有効そうだな。
代入して
∇g(x,y) = (0,0) ⇔ (u²-v²)(u-v) + (u+v) = 3/4, ←[3]
(u²-v²)(u+v) + (u-v) = 3/4. ←[4]
辺々 [3] - [4] して、 (u²-v²)(-2v) + (2v) = 0 から
2v{ 1 - (u²-v²) } = 0 より
v = 0 または u²-v² = 1.
v = 0 の場合は、[3], [4] へ代入して
u³ + u = 3/4. ←[5]
h(u) = u³ + u - 3/4 置くと、
h’(u) = 3u² + 1 ≧ 0 + 1 > 0 より h(u) は狭義単調増加。
lim[u→-∞] h(u) = -∞, lim[u→+∞] h(u) = +∞ と合わせると、
h(u) はただひとつの零点を持つことが判る。
[5] ⇔ h(u) = 0 ⇔ u = u₀ と置く。
u²-v² = 1 の場合は、[3], [4] へ代入して
2u = 3/4. ←[6]
[6] を u²-v² = 1 へ代入すると、 v が実数でなく、不適である。
さて、g(x,y) は唯一の停留点 (x,y) = (u₀ + 0, u₀ - 0) を持つことが判ったが、
この点は極値点だろうか?
ヘッセ行列を計算してみると、
Hess[ g(x,y) ] =
4(y²+1) 8xy
8xy 4(x²+1)
となるから、
Hess[ g(u₀,u₀) ] =
4(u₀²+1) 8u₀²
8u₀² 4(u₀²+1)
より
det Hess[ g(u₀,u₀) ] = { 4(u₀²+1) }² - { 8u₀² }²
= -48u₀⁴ + 32u₀² + 16
= -16(u₀ + 1)(u₀ - 1)(3u₀² + 1).
h(u) の単調増加と
h(-1) = -11/4 < 0,
h(1) = 5/4 > 0
より、
-1 < u₀ < 1.
よって、
det Hess[ g(u₀,u₀) ] > 0.
g(u₀,u₀) は g(x,y) の極値点であることが判る。
Hess[ g(u₀,u₀) ] の 第1行1列成分が 4(u₀²+1) > 0 であることから、
g(u₀,u₀) は極小値である。
開領域 (x,y) ∈ 実数² で定義された g(x,y) の
唯一の極小値であることから、g(u₀,u₀) は g(x,y) の最小値である。
g(x,y) ≧ g(u₀,u₀) = 2(u₀²+1)(u₀²+1) - 3(u₀+u₀)
= 2u₀⁴ + 4u₀² - 6u₀² + 2.
u₀³ + u₀ = 3/4 のとき 2u₀⁴ + 4u₀² - 6u₀² + 2 ≧ 0
であることを示せば目的を達したことになるが、これは成り立つだろうか?
F₁(u) = 2u⁴ + 4u² - 6u² + 2 と置く。
F₁(u) = (u³ + u - 3/4)(2u) + (-4u² - (3/2)u + 2) より
F₁(u₀) = -4u₀² - (3/2)u₀ + 2.
u₀³ + u₀ = 3/4 のとき -4u₀² - (3/2)u₀ + 2 ≧ 0 が示せればよい。
F₂(u) = -4u² - (3/2)u + 2 と置と、
F₂(u) = -4(u + 3/16)² + 137/64.
= -4(u + 3/16 + √134/8)(u + 3/16 - √134/8)
より
F₂(u) ≧ 0 ⇔ -3/16 - √134/8 ≦ u ≦ -3/16 + √134/8.
h( -3/16 - √134/8 ) = (-8691 - 819√67)/4096 < 0,
h( -3/16 + √134/8 ) = (-8691 - 819√67)/4096 > 0
と h(u) の単調性より。
h(u) = 0 となる唯一の u である u = u₀ は、
-3/16 - √134/8 < u₀ < -3/16 + √134/8 の範囲にある。
よって、F₂(u₀) ≧ 0.
これで題意は示されたことになるのだが、
熱帯夜の暑さを倍増する熱苦しい計算だったな。
なんか、チャラい解法は無いの?
No.5
- 回答日時:
これは、真面目に微分しないとアカンやつかなあ...
暑くてダルいんで、なるたけチャチャっと済ませたかったんだけど。
No.2 の間違い訂正としては、
-2 ≦ s ≦ 2 のとき s⁴/8 + s² - 3s + 2 ≧ 0 であることを
(前のような間違った理由ではなく)きちんと示せばよくて、
Mathematica先生によると
全実数 s に対して s⁴/8 + s² - 3s + 2 ≧ 0 であるらしい。 ←[1]
やってみよう。
f(s) = s⁴/8 + s² - 3s + 2 と置く。
f’(s) = s³/2 + 2s - 3,
f”(s) = (3/2)s² + 2 である。
全ての実数 s に対して f”(s) ≧ 0 + 2 > 0 であるから、
f’(s) は狭義単調増加。
lim[s→-∞] f’(s) = -∞, lim[s→+∞] f’(s) = +∞ と合わせると、
f’(s) はただひとつの零点を持つことが判る。
f’(s) = 0 ⇔ s = s₀ と置く。
f(s₀) は、f(s) の唯一の極小値であり、よって最小値である。
さて、f(s₀) ≧ 0 が成り立てば、[*] が示されたことになる。
f’(s₀) = s₀³/2 + 2s₀ - 3 = 0 の条件下に
f(s₀) = s₀⁴/8 + s₀² - 3s₀ + 2 ≧ 0 は言えるか?
f(s₀) = s₀⁴/8 + s₀² - 3s₀ + 2
= (s₀/4) (s₀³/2 + 2s₀ - 3) + (s₀²/2 - (9/4)s₀ + 2)
= (s₀/4) f’(s₀) + (1/2){ (s₀ - 9/4)² - 17/16 }
= (1/2){ s₀ - (9 - √17)/4 }{ s₀ - (9 + √17)/4 }
だから、
s₀ ≦ (9 - √17)/4 または s₀ ≧ (9 + √17)/4 であればよい。
f’( (9 - √17)/4 ) = (345 - 81√17)/32 > 0, ←[2]
f’(s) は単調増加だから、 f’(s) = 0 となる s = s₀ は
s₀ < (9 - √17)/4 である。
...できた。
こんどは真面目にきちんと示したけど、ちょっと息切れしたよ。
もっとサラっとやる方法が別にあるんだろうな...
[2] のところで、実際に代入せずに
f’(s) を (s²/2 - (9/4)s + 2) で割るくらいじゃあ
たいして楽にならないし。
No.4
- 回答日時:
> F(1.1,V)の極小ってV=0ではないのでは?
あらら、たしかに。って…うっかりツラレたけれども、
(x²+1)(y²+1)= x²y² + x² + y² + 1 ≧ x² + y² + 1
なんだから
x² + y² + 1≧ 3(x+y)/2
だけで足りるんじゃん。
F(U,V) = (U+V)² + (U-V)² + 1 - (3/2)U
= 2(U² + V²) + 1 - (3/2)U
と書けば極小がF(U,0)上にあるのは(今度は)間違いなしで
F(U,0) = 2U² - (3/2)U + 1
は判別式Dが負、そして
F(0,0)>0
No.3
- 回答日時:
[1] おなじみの変数変換
(x,y) = ((U + V), (U - V))
で
F(U,V) = ((U + V)²+1)((U - V)²+1) - (3/2)U
と書き換える。F(U,V)の極小がF(U,0)上にあることはすぐわかるから、
∀U(F(U,0) ≧ 0)
を示せばよし。
[2] 改めて
S(U) = (U²+1)²
T(U) = (3/2)U
とすると、明らかに
∀U(S(U) ≧ 1)
より
∀U(U < 2/3 ⇒ T(U) < S(U))
[3] 次に
S'(U) = dS/dU = 4(U²+1)U
T'(U) = dT/dU = 3/2
とおけば
S'(2/3) = 4((2/3)²+1)(2/3) > 4(2/3) > T'(2/3) = 3/2
S''(U) = dS'/dU > 0
より
∀U(U ≧ 2/3 ⇒ S'(U) > T'(U))
しかも
S(2/3) > T(2/3)
なので
∀U(U ≧ 2/3 ⇒ S(U) > T(U))
私の勘違いでしたら申し訳ありませんが、
F(1.1,V)の極小ってV=0ではないのでは?
https://www.wolframalpha.com/input?i=%28%281.1%2 …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
初めて自分の家と他人の家が違う、と意識した時
子供の頃、友達の家に行くと「なんか自分の家と匂いが違うな?」って思いませんでしたか?
-
隣り合う平方数の大きい数から小さい数を引いた差は必ず奇数の数列になるのですか? たまたま見つけたので
数学
-
仕事をクビになり会社の門で憔悴していたらババアがいきなり話しかけてきました。 「この大きい袋に7で割
数学
-
こうなる理由が分かりません
数学
-
-
4
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
5
大変!!またまた我が家の新築の豪邸にネズミが出ました!ちょうどエクササイズ中だったので、フラフープを
数学
-
6
数学で、alphabetのxを、かけ算のマークとして利用できますか
数学
-
7
図形について
数学
-
8
√2が無理数であることの証明では、背理法以外には方法はないのでしょうか?
数学
-
9
以下の問題で理解できないところがあります
数学
-
10
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
11
1の問題ですがBD直径より、角DABが90度になるのはわかるのですが、なぜ角CEBが90度になるかわ
数学
-
12
確率の問題 数学と実生活と
数学
-
13
おしえてgooに図形の問題を投稿したら、削除されました。なぜでしょう?
数学
-
14
(2)の問題なのですが、解答には3列目に書かれた数が7m-4、5列目に書かれた数が7n-2と表す、と
数学
-
15
他のスレだとだいたいいるのに数学カテには「そんな中学生レヴェルの質問はするな」とかいうへそ曲がりがい
数学
-
16
cos^2θ/tanθ=1でθを出すことはできますか? 出せるならどうやって出すのかなどを教えていた
数学
-
17
ちょっとむずかしいね?
数学
-
18
高校数学 ドモルガンの法則についての質問です。 aまたはbではない=aかつbではない になるのは何故
数学
-
19
√2の証明によく出てくる言葉で、 p^2が2の倍数ならpは2の倍数 っていうのが意味が分からなくて困
数学
-
20
小5 算数
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
SQL文のwhere条件文で使う <> ...
-
私の解答と問題集の解答とは考...
-
並列回路の合成抵抗の出し方
-
1/∞=0は、なぜ?
-
Xの二乗-X+1=0 という2次方程式...
-
中一 比例式の計算の時 少数だ...
-
数学で、項を指すとき、例えば2...
-
-8X=2 の方程式の時の解き方...
-
xy-x-y+1 【因数分解】
-
不等式の証明
-
√0.25=±0.5である。 これはなぜ...
-
何で画像は恒等式でないのに両...
-
組み合わせの公式
-
数学的帰納法
-
高2恒等式
-
1/7=1/m+1/nを満たすmとnの求め方
-
∫_α^β (x-α)^m (x-β)^n dx の計...
-
数学 2次方程式3x二乗+15x=0...
-
定数分離すべきかどうか。
-
文字式の計算
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1/∞=0は、なぜ?
-
SQL文のwhere条件文で使う <> ...
-
毎日毎日暑すぎて平方完成する...
-
数学で、項を指すとき、例えば2...
-
Xの二乗-X+1=0 という2次方程式...
-
√2が無理数であることの証明で...
-
1/7=1/m+1/nを満たすmとnの求め方
-
方程式
-
極限でわからないところがあり...
-
どうやってこうなりましたか?
-
記号(イコールの上に三角形)...
-
等式記号に似た三本線
-
質問です。 a+b+c=0のとき、...
-
複素共役の計算、途中式
-
入門問題精巧・第1章・P47.練習...
-
組み合わせの公式
-
中一 比例式の計算の時 少数だ...
-
x/(x+1) = 1 - 1/(x+1)
-
数学における 等価と同値って同...
-
数3の問題です 写真の問題の(...
おすすめ情報