https://imgur.com/a/T5plJ54
楕円については、方程式より焦点が(s, 0) と(-s, 0)
になるのは形からわかる。また内側にあるのも少し考えればわかる。
x = 0 を考えて焦点からの距離の和というのが2aというのがわかり
y = 0をかんがえて初等的に焦点の座標がもとまる
でも双曲線については、
焦点の座標を先に仮定するか
焦点のからの距離の差を先に仮定するかのどちらかをしないと
ここから問題のことを示すのは実はできません。
(焦点の座標との距離を計算して一定になるのをしめすのじゃだめなことに注意)
?
No.13
- 回答日時:
楕円について
(+-s, 0 )の形になることが
方程式と焦点からの距離の和がひとしいだけわかるのか
具体的に証明しない限り
わかったとはいえないのです
なぜ
いびつや原点から非対称な形にならない、
横長の楕円になるか
を
具体的に証明しない限り
証明したことにはならないのです
なるほど。いいたいことがわかりました。
方程式を見てすこし考えればわかるけど、定量的にはいうのは難しいか。
でも、たとえばx^2+y^2=1とみて
まるいくて、原点周りに対象であるといえないといってますか?
No.12
- 回答日時:
x^2/a^2+y^2/b^2=1
c^2=a^2-b^2
b^2=a^2-c^2
x^2b^2+y^2a^2=a^2b^2
x^2(a^2-c^2)+y^2a^2=a^2(a^2-c^2)
a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2
a^2x^2+a^2y^2+a^2c^2=a^4+c^2x^2
a^2(x^2+y^2+c^2)=(cx+a^2)^2-2cxa^2
a^2(x^2+y^2+c^2+2cx)a^2=(cx+a^2)^2
a^2{(x+c)^2+y^2}=(cx+a^2)^2
a√{(x+c)^2+y^2}=cx+a^2
4a√{(x+c)^2+y^2}=4cx+4a^2
0=4a^2-4a√{(x+c)^2+y^2}+4cx
(x+c)^2+y^2=(2a-√{(x+c)^2+y^2})^2+4cx
x^2-2cx+c^2+y^2=(2a-√{(x+c)^2+y^2})^2
√{(x-c)^2+y^2}=2a-√{(x+c)^2+y^2}
√{(x-c)^2+y^2}+√{(x+c)^2+y^2}=2a
だから
楕円
x^2/a^2+y^2/b^2=1
の焦点の座標が
(±√(a^2-b^2),0)
となるのです
焦点の座標を先に(s,0)と(-s,0)と仮定してはいけません
してません。
楕円については(+-s, 0 )の形になることが
方程式と焦点からの距離の和がひとしいだけわかります。
いびつや原点から非対称な形にならない、横長の楕円になるから。
ぎゃくに、何がわからないの??
https://imgur.com/a/a1djMI8
No.11
- 回答日時:
a > bだから=1になるためにxのほうがおおきくなきゃいけない
からといって
楕円の焦点が
長軸上にある
と
はわかりません
No.8
- 回答日時:
そこいらじゅうで解説されていますが、見る気ないみたいなので・・・
x^2/a^2 - y^2/b^2 = 1
で c^2 = a^2 + b^2(c > 0、当然 c > a) と置いておきます。
これでもちろん一般性が崩れることはありません。
これは
(c^2-a^2)x^2 - a^2・y^2=a^2(c^2-a^2)
→ c^2・x^2 + 2ca^2・x + a^4 = a^2・x^2 + 2ca^2・x + a^2・c^2 + a^2・y^2
→ (cx + a^2)^2 = a^2{(x+c)^2 + y^2}
と変形できます。
両辺の平方根を取ると
(cx + a^2) = ±a√((x+c)^2 + y^2)
→ (x-c)^2 + y^2 = (x+c)^2 + y^2 + 4a^2 ±4a√((x+c)^2 + y^2})
→ (x-c)^2 + y^2 = (√((x+c)^2 + y^2) ±2a)^2
双曲線の定義式にたどり着きました。多少技巧的ですが完全に演繹的です。
#c は焦点位置
たしかに、そうだか。
でも、その無機の説明は証明になってますか?
演繹的といっているけど、問題文に書いてあるからそう書いたのは数学として大人げないと思います
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
ゆるやかでぃべーと タイムマシンを破壊すべきか。
これはディベートの論題だと仮定したうえでの回答お願いします。あなたは、その末にタイムマシンを壊してしまうのか、使い道を探すのかどうかを考えてもらいたいです。
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
1+2+3+…=?
数学
-
数学の問題ですが、わかりません
数学
-
確率の問題 数学と実生活と
数学
-
-
4
a, bがa>0, b>0,1/a+2/b=3を満たして変化するとき, (1) abの最小値を求めよ
数学
-
5
微分係数の定義?
数学
-
6
tの値が解答と合いません。どこが間違ってるか指摘お願いします
数学
-
7
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
8
なんでこんなことがわからない?
数学
-
9
逆三角関数の方程式の問題です。解いたらこうなりましたが、本には、解なしと書かれていました。僕が作った
数学
-
10
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
11
以前にも質問させていただいたのですが、理解することができなかったので再度質問させていただきます。 写
数学
-
12
他のスレだとだいたいいるのに数学カテには「そんな中学生レヴェルの質問はするな」とかいうへそ曲がりがい
数学
-
13
複素数平面について質問です。 点Zが原点Oを中心とする半径1の円上を動く時、 ω=(6Z-1)/(3
数学
-
14
1/3で場合分けは?
数学
-
15
画像の説明で式中の*は掛け算、'は微分を表しているのでしょうか? あと他にもアンダーバー、_とかも出
数学
-
16
数学II 2つの整式f(x), g(x)の和と積をx-aでわったときの余りが、それぞれb,cであると
数学
-
17
難しいのでゆっくりよんでください。
数学
-
18
ちょっとむずかしいね?
数学
-
19
cos^2θ/tanθ=1でθを出すことはできますか? 出せるならどうやって出すのかなどを教えていた
数学
-
20
iに絶対値がつくとどうなるのかを教えてください
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・人生のプチ美学を教えてください!!
- ・10秒目をつむったら…
- ・あなたの習慣について教えてください!!
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・【大喜利】【投稿~9/18】 おとぎ話『桃太郎』の知られざるエピソード
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
等角螺旋(らせん)の3次元的...
-
右下の小さい数字について
-
なぜベクトルの外積の向きが右...
-
「原点に返る」と「原点に戻る...
-
三角関数 範囲が-πからπのとき...
-
距離と方向角から座標を求める...
-
「0でない2つのVのベクトルu,v...
-
高校数学 <ベクトルと空間図形>
-
複素数平面についてです ①xy平...
-
楕円の円周上の座標を求める計...
-
測量座標と算数座標の違い
-
座標計算の公式
-
N点間の中心と重心の求め方
-
円の中心座標ってもとめられま...
-
「通常の平面上の座標に三角形...
-
直交座標、斜交座標
-
座標のS/I方向について
-
グラフが異なる2点でX軸の正の...
-
高校1年の数学なのですが 因数...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
「原点に返る」と「原点に戻る...
-
出題ミスだね?
-
右下の小さい数字について
-
重分積分の極座標変換について
-
複素数平面についてです ①xy平...
-
三角関数 範囲が-πからπのとき...
-
距離と方向角から座標を求める...
-
複素数平面と座標平面の対応に...
-
なぜベクトルの外積の向きが右...
-
【数学】 解説の下から4行目が...
-
距離、方位角から座標を求める方法
-
「0でない2つのVのベクトルu,v...
-
大学の複素数の問題なんですが...
-
測量座標と算数座標の違い
-
楕円の円周上の座標を求める計...
-
楕円の角度とは?
-
エクセルでグラフの作り方 軌...
-
等角螺旋(らせん)の3次元的...
-
赤線の部分 y=a(x-p)(x-q) で...
おすすめ情報