
No.18ベストアンサー
- 回答日時:
> ということはωのような形になるのですか?
「ωのような形」ってなんやねんな。
「代数的数」ってのは、整数係数多項式の根であるような数
という意味の言葉だから、X^5=1 の解って言ってる時点で
最初から X は代数的数に決まっている。
そんなのは言うまでもないことだが、代数的数かどうかと
その数が整数の四則演算と冪根だけを使って表せるか?や
その実部,虚部が整数の四則演算と冪根だけを使って表せるか?は
全く別の話。
5次以上の方程式の根の中には、代数的数だが
整数の四則演算と冪根だけを使って表せないものがあるというのが、
よくガロア理論と呼ばれる、アーベル・ルフィニの定理だった。
No.2 No.14 で言ったのは、
X^5=1 の解の実部,虚部は、整数の四則演算と冪根だけどころか
整数の四則演算と平方根だけを使って表せる という話。
これは、更に強い条件だ。
その表し方は、実際に方程式を解いてみることでも得られるが、
複素数平面上で単位円に内接する正五角形をユークリッド作図
することでも得られる。というか、この作図によって方程式
X^5=1 を解くことができる。 参考↓
https://www.suri-joshi.jp/enjoy/pentagon/
ちな、ガウスが幼少時に数学者になることを決めたのは、
X^17=1 の解が整数の四則演算と平方根だけを使って表せる
ことを証明して自信を得たから ってのは、数学おじが好む逸話。
X^5 = 1 の解を具体的に表示しとくと、
X = 1,
X = { -1 ± √5 }/4 ± i {√(10 - 2√5) }/4 ;復号任意
の計 5 個。
>X^5 = 1 の解を具体的に表示しとくと、
X = 1,
X = { -1 ± √5 }/4 ± i {√(10 - 2√5) }/4
おおっ!これは素晴らしい。この具体的な答えが欲しかったのです。これってネット検索しても見つかりませんでした。ありがとうございます。
代数的数と整数係数多項式の根は同じことですね。躓いていました。
No.14
- 回答日時:
←No.2 補足
> 要は、5つの解とも複素数の形で表せるのか?ということです。
解は、正五角形の頂点だって言っているでしょう?
正五角形は、定規とコンパスだけを使って作図できる図形です。
ということは、その頂点の座標は、冪根どころか
加減乗除と平方根だけを使って算出できる値です。
No.12
- 回答日時:
No.10
- 回答日時:
x^5=1
の
解1はe^{2πi/5}の5乗
1=(e^{2πi/5})^5
解e^{2πi/5}はe^{2πi/5}の1乗
e^{2πi/5}=(e^{2πi/5})^1
解e^{4πi/5}はe^{2πi/5}の2乗
e^{4πi/5}=(e^{2πi/5})^2
解e^{6πi/5}はe^{2πi/5}の3乗
e^{6πi/5}=(e^{2πi/5})^3
解e^{8πi/5}はe^{2πi/5}の4乗
e^{8πi/5}=(e^{2πi/5})^4
と
e^{2πi/5}のべき乗の形で表せます
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 複素数平面について質問です。 点Zが原点Oを中心とする半径1の円上を動く時、 ω=(6Z-1)/(3 6 2024/05/25 14:14
- 数学 複素数平面上の点U(u),V(v),W(w)がこの順に左回りで三角形をなし、しかも△UVWの内部には 7 2024/08/01 14:38
- 数学 複素数の問題の解答の記載でわからないところがあります。 4 2024/02/11 21:11
- 数学 次の複素数を極形式で表せ。偏角θの範囲は0≦θ<2πとする -4( cosπ/5+i sinπ/5) 6 2023/07/03 14:19
- 数学 量子コンピュータ内で扱う量子ビットは離散値ですか? 2 2023/09/06 11:33
- 物理学 物理 2 2023/01/17 13:31
- 英語 辞典の表記規則(不可算名詞の複数形の意味)について 3 2023/09/11 09:42
- 数学 z^3=複素数 の1つの解をxとし、 arg x=θとすると、 (←これはxの位置と原点で構成する角 3 2023/06/30 10:22
- 数学 離散フーリエ変換での回転子計算について 6 2024/04/10 22:45
- 数学 複素数の答えはいくつになりますか? 3 2022/12/20 12:55
このQ&Aを見た人はこんなQ&Aも見ています
-
簡単なはずですが教えてください。
数学
-
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
4で割った余りが3でないときは図のように書いてもいいんですか?できればその根拠となるサイトを載せてい
数学
-
-
4
対数
数学
-
5
これなぜ最後の不定形が0に収束するとわかるのでしょうか。a,b分かってそれを代入しても不定形になるだ
数学
-
6
√2が無理数であることの証明では、背理法以外には方法はないのでしょうか?
数学
-
7
|x+2|>0 計算方法
数学
-
8
2の810乗はいくつですか?
数学
-
9
a+b=1のとき a²+b² > ab 解説お願いします
数学
-
10
二次方程式で、解が有理数になるのはb²-4acがどのような数のときか?
数学
-
11
質問したい事が2つあります。 ①、以前に質問した2024.5.8 08:24の質問の2024.5.9
数学
-
12
この数学の問題解き方あってるか見てほしいです
数学
-
13
ノンアルコール飲料
数学
-
14
数学で、alphabetのxを、かけ算のマークとして利用できますか
数学
-
15
ちょっとむずかしいね?
数学
-
16
こうなる理由が分かりません
数学
-
17
小5 算数
数学
-
18
和積・積和の公式について質問です。 自分は毎回加法定理から導いてましたが、 一つだけ覚えてα、βで微
数学
-
19
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
20
cosθ-cosαが正であることを示し方がわかりません。 ただし、-π/2<θ<π/2 0<α<π/
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
二重和
-
複素数に拡張したタンジェント...
-
これって①番の公式を使うのでし...
-
全体100人のうちリンゴ派90人み...
-
確率の質問です
-
純実(purely real)とはどんな状...
-
グラフの作成に便利な、
-
フラッシュ暗算ってそろばん経...
-
この増減表を求める問題で微分...
-
媒介変数 x = t + 1/t-1 , y = ...
-
f(z)=(z^2-1)のテイラー展開と...
-
ヒット&ブローゲーム(数あて...
-
九星気学では、人の生まれた年...
-
画像の問題の(2)で質問です。 ①...
-
行列の乗算の計算の仕方を教え...
-
mx-y-m-1=0,x+my-2m-3=0の交点P...
-
この増減表を求める問題で微分...
-
n次交代式はしたの写真のように...
-
34533とはどういう意味でしょう...
-
4500と3000を1:9と3:7とか比...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(z)=(z^2-1)のテイラー展開と...
-
中高で数学をやる意義は? と聞...
-
二重和
-
誤差の大きさ
-
確率の質問です
-
123を使って出来る最大の数は?
-
【数学の問題】男女4vs4の合コ...
-
媒介変数 x = t + 1/t-1 , y = ...
-
2025.2.17 02:11にした質問の延...
-
演算子法についての式変形について
-
三つの複素数の位置関係
-
クレメールの公式について教え...
-
2.2%は分数で表すと22/1000、約...
-
皆既日食について
-
高1数学二次関数の問題です!
-
一番なんですけど、 等比数列だ...
-
数学と言うか数字の面白さ
-
絶対値の中が0以上ならそのまま...
-
これなに
-
数学
おすすめ情報