No.3ベストアンサー
- 回答日時:
標準的カリキュラムでしたら,ネーターの定理は大学の物理系の2年位の
解析力学でやる内容です.
高校物理の範囲で,というのはなかなか難しいことをご承知ください.
oshiete_goo さんが
> 「ネーターの定理」とは, 対称性と保存則に関する定理で, 簡単に言えば,
> 対称性と保存則が非常に密接に結びついていることを表した定理です.
と書かれているとおりです.
ある量が時間変化しないことを,その量が保存されると言います.
ただし,不変性というのが何の不変性かが問題で,
ラグランジアンと呼ばれる量の不変性を指しているところがやっかいなところです.
例えば,自由粒子(何も力がかかっていない)ですと,
エネルギーも運動量も角運動量も時間変化しません(保存されます).
今度は自由落下を考えてみましょう
┬x=0 ∧
│ │
│ ε
│ │
│ ∨ ┬ x'=0
│ │
│ ● │ ●
│ │ │ │
│ │mg │ │ mg
│ ∨ │ ∨
│ │
│ │
∨ ∨
x x'
右図と左図は座標をεずらしただけです.
手を離してから時間が経過するに従って落下速度は増加していきますから
当然運動量も増加し,運動量は保存されません.
運動方程式 F = ma (F:力,a:加速度)で見ると,
(1) F=mg (座標によらない),
(2) a = d^2 x/dt^2 = d^2 x'/dt^2 (微分したら,座標の平行移動分は消えてしまう)
ですから,運動方程式はどちらの座標形で書いても同形の
(3) d^2 x /dt^2 = g (or d^2 x' / dt^2 = g)
です.
oshiete_goo さんの言われるように
> 空間内の並進運動に対する時空の不変性(並進対称性)<--> 運動量保存則
ですが,上の話ですと
○ 並進に対して運動方程式が不変
○ 運動量は保存しない
になっています.
つまり,運動方程式が不変かどうかで判断してはいけないのです.
不変かどうかを調べるべき量は,
oshiete_goo さんも書かれているとおりラグランジアンなのですが,
ここらへんがちょっと難しいところです.
ラグランジアンは,単純な系の場合には
(4) (運動エネルギー) - (ポテンシャルエネルギー)
と思ってよいのですが,詳しい説明は高校物理の範囲をはるかに越えます.
No.2
- 回答日時:
ネーターの定理とは、物理法則の対称性と保存則の関係を論じたものです。
古典力学から量子力学に移行するとき、ニュートンの方程式は、シュレーディンガーの方程式(波動関数)に替わりますが、エネルギーは波動の振動数と、運動量は波長と一定の関係(アインシュタイン=ド・ブロイの関係)をもちます。このことから、物理法則が、時間に対して普遍であるならば、エネルギー保存則が、空間に対して普遍であるならば、運動量の保存則が導かれるのです。No.1
- 回答日時:
他の方が遠慮されているようなので, 暫定的答えを.
ちゃんとした回答は詳しい方に譲ります.
エミー・ネーターは女性数学者で, 略歴は下記URLなどをごらんあれ.
http://www.com.mie-u.ac.jp/~kanie/tosm/humanind/ …
物理で普通よく言及される「ネーターの定理」とは, 対称性と保存則に関する定理で, 簡単に言えば,対称性と保存則が非常に密接に結びついていることを表した定理です.
定理そのものは, 本来は数学の「不変変分論」における基本的な定理ですが, 物理への応用に絞って書けば,
http://www-jlc.kek.jp/general/DOC/oho95-html/nod …
などにあるように, 何らかの変換に対してラグランジアンが不変ならば, つまり対称性があれば,その対称性に付随する保存量が存在するし,その逆も言えて,対称性と保存量が1対1に対応するということです.
ただし,これは高校物理を超えた表現で,具体例でいくのが良いでしょう.
次の例が有名です.
「時空の対称性の帰結としてエネルギー・運動量保存則や角運動量保存則が導かれる.」
空間内の並進運動に対する時空の不変性(並進対称性)<--> 運動量保存則
空間内の回転運動に対する時空の不変性(回転対称性)<--> 角運動量保存則
時間方向の並進運動に関する時空の不変性(時間方向の並進対称性)<--> エネルギー保存則
もっと先の話としては,第2のURLにもあるように,例えば,内部空間の対称性から電荷保存が導かれたり,話は尽きませんが,ここらで.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 https://youtu.be/p7GJUg6Wbtw ただよびの飯泉摩美という物理講師がYou 1 2023/03/07 06:19
- その他(教育・科学・学問) 高2・理系・夏休みの学習について 2 2022/07/10 01:00
- 工学 航空宇宙工学を学ぶことについて 2 2022/08/20 16:14
- 高校 転校の事で、親から「行ける範囲の所から、行ける範囲への高校に転校するのは無理だよ」言われたけど、本当 2 2022/07/01 07:22
- 物理学 黄色マーカVbと書いてあるのですがVaの間違いですかね? また左の項ですと、積分範囲∫(r1→a)で 1 2023/06/21 15:29
- Excel(エクセル) エクセルのマクロを教えてください。 4 2022/10/06 08:53
- 大学受験 大学推薦入試について 0 2022/10/03 21:28
- Excel(エクセル) エクセルの複写について 4 2022/04/10 01:02
- 高校 先日バスに乗っていると、高校生くらいの方と相席することになりました。そして、窓側の席に高校生 廊下側 5 2023/08/03 19:15
- Excel(エクセル) エクセルのvlookupについて質問です 3 2023/01/05 15:15
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
高級寿司が低級寿司と違って旨...
-
ベート―ヴェンの晩年のSQはどう...
-
鉄道模型のサウンドシステム
-
不協和音とは?
-
井上尚弥のつよさ?
-
電池は、どうやって電圧を一定...
-
物理学科は賢い学生が集まる?
-
重いパンチ、打球が飛ぶスイン...
-
みなさんの物理に関するとって...
-
相対性理論は間違えている。
-
日本語とヘブライ語の近さ・・・
-
【アインシュタイン】人間が同...
-
数学は苦手だけど、物理は得意...
-
相対性理論の嘘について
-
物理で使うΔ(デルタ)は普通の三...
-
高校で物理未履修です。 物理基...
-
高校の物理です。 (2)と(3)...
-
いんちき相対論が100年もった理...
-
高校1年生は物理をほとんど勉...
-
物理基礎で答えを四捨五入する...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
高校で物理未履修です。 物理基...
-
数学は苦手だけど、物理は得意...
-
物理学科は賢い学生が集まる?
-
物理基礎で答えを四捨五入する...
-
理論系が人気なワケは?
-
物理で使うΔ(デルタ)は普通の三...
-
理系院生ですが、提出した修論...
-
みなさんの物理に関するとって...
-
自分がアホすぎて人生が嫌にな...
-
高校1年生は物理をほとんど勉...
-
趣味(独学)で学べる物理の限...
-
節の読み方教えてください。
-
大学院から専攻を変えることは...
-
参考書一冊完璧にする場合って...
-
物理のレポート
-
東大物理50↑をめざす!微積は...
-
構造力学に関連する高校物理の範囲
-
数え方(物理)物理のニュートン...
-
高校物理・化学基礎と物理・化...
-
物理学を学んだ学生の就職について
おすすめ情報