お酒好きのおしりトラブル対策とは

コンパクトな集合とコンパクトな集合の積集合が、コンパクトにならない例について、おしえてください

空間がハウスドルフでしたら、そのような例がないことまではわかったのですけど、具体的な例が思いつきませんでした

どうかよろしくおねがいします

A 回答 (1件)

積集合って共通部分集合(intersection)で良いんですよね。


直積集合の意味ならチコノフの定理があるし。

それで、例を考えてみました。T1にもなりませんが、T0です。
区間[0,1]に一点pを加えて
X=[0,1]∪{p}
とします。位相は[0,1]の開集合とXを開集合とします。
こうするとXはコンパクトです。またpを含む任意の部分集合もコンパクトです。
# pを被覆する開集合はXだけですから

A=[0,1]
B=(0,1)∪{p}
とするとどちらもコンパクトです。
A∩B=(0,1)
はコンパクトではありません。
    • good
    • 1
この回答へのお礼

なるほど~
おもしろい例をありがとうございます
なんとなく「紅一点位相」って命名したいです
スッキリしました♪

お礼日時:2008/01/29 12:33

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q”コンパクト”の定義について。集合、位相

集合論における、”コンパクト”の定義について質問です。
言い回しの違いがあるにせよ、以下の2種類があるようですが
どちらが正しいのでしょうか?

(その1)
コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。

(その2)
ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。

個人的には、(その1)の定義が正しいとおもっています。
”位相空間”であることが、前提条件でないと
話が進まない気がしています。

Aベストアンサー

> 結局のところ、コンパクトとは何なのでしょうか?。

このあたりをご覧になるとよいかと。
http://oshiete1.goo.ne.jp/qa666504.html

参考URL:http://oshiete1.goo.ne.jp/qa666504.html

Q集積点が、まったく分かりません!!

集積点の意味がまったくわかりません。詳しく教えてください。

Aベストアンサー

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるようなx以外のAの要素が存在するような点」
と言い替えられます。

直観的な言い方をすれば、x∈XがAの集積点であるとは
「xのどんな近くにも(x以外の)Aの点がある」
と言う条件をみたすような点のことです。

ついでに集積点との対比で孤立点も覚えてしまいましょう。
集積点とはある意味で対照的なものが孤立点です。
すなわちx∈XがAの孤立点であるとは
xがAの要素であり  …(S1)
かつxのある近傍とAの共通部分にx以外のAの点が含まれない。…(S2)
ような点のことです。
Xが距離空間なら、これは
「あるεに対してxからの距離がε以下であるようなAの要素はxだけであるような点」
となります。

注意していただきたいのはx∈AであることはxがAの集積点であるためには
必要でも十分でもないということです。
xがAの点であってもそれが孤立点ならxは集積点ではないし、Aの点でないような
Aの集積点も存在します。
しかし孤立点と言う概念は集合Aの要素に対して与えられる概念ですから、Aに
属さない点が(S2)の条件だけ満たしてもそれをAの孤立点とは呼びません。

あとは距離空間(ユークリッド空間)での簡単な例を挙げておきますのでイメージをつかんで下さい

例(1)Xを2次元ユークリッド空間として
A={(x,y)∈X| x^2 + y^2 < 1} ∪ (2.0)
とします。つまりAは原点中心半径1の開円盤と点(2,0)の和集合です。
するとAの集積点(の集合)は
{(x,y)∈X| x^2 + y^2 ≦ 1}
すなわち原点中心半径1の開円盤とその境界となります。
点(2,0)は孤立点なので集積点ではありません。

例(2)Xを2次元ユークリッド空間として
A={(x,y)∈X| y = sin(1/x) ,x∈(0,∞) }
とします。Aの集積点(の集合)はA自身と集合
B={(0,y)∈X| y∈[-1,1] }
の和集合です。

例(3)Xを1次元ユークリッド空間として
A= { 1/n | n=1,2,…}
とします。原点{0}はAの集積点です。しかしA自身の点はすべて孤立点です。

例(4)Xを1次元ユークリッド空間として
Aは開区間(0,1)の有理点。すなわち
A= { x∈(0,1)|xは有理数 }
とします。Aの集積点(の集合)は閉区間[0,1]です。

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるよう...続きを読む

Qコンパクトとは?

コンパクト、について調べると、

・Aの任意の開被覆(開集合の族で覆ったもの)から、有限個の開集合を選んで、新しい開被覆を作ることができる。

という難しい定義があるのですが、一方で

・任意の数列が収束する部分列を持つ集合

というのもあったり

・有界な閉集合

というのもあったり。

どういう関係になっているのでしょうか。全部同じでしょうか?(3番目は直感的にわかりやすいです)

Aベストアンサー

White-tigerさん。こんにちは。
>・Aの任意の開被覆(開集合の族で覆ったもの)から、有限個の開集合を選んで、新しい開被覆を作ることができる。
というのがコンパクトの一般的な定義です。
>・任意の数列が収束する部分列を持つ集合
というのは詳しく言うと点列コンパクトと言われていますが、距離空間の場合はコンパクトと点列コンパクトは同値です。ユークリッド空間の場合はコンパクトであることと有界閉集合であることは同値であることが示せます(これをHeine-Borelの定理という)。したがって
>・有界な閉集合
はユークリッド空間の場合のコンパクト集合になります。

参考URL:http://www.rimath.saitama-u.ac.jp/lab.jp/fsakai/htop4.html

Q閉区間[-1,1]がコンパクトである事の証明は?

こんにちは。

閉区間[-1,1]がコンパクトである事はどうやって証明すればいいのでしょうか?

RはT:={(a,b)∈2^R;a,b∈R}を位相として位相空間をなしますよね。
[-1,1]の開被覆の集合{A∈2^T;[-1,1]⊂∪[B∈A]B}:=C
∀A∈Cを採った時、どのように有限個のB1,B2,…,Bn∈Aを選べば
[-1,1]⊂∪[i=1..n]Bi
と出来るのでしょうか?

Aベストアンサー

No1です。

閉区間列S1、S2、…、Sn、…はいずれも空でありませんから(∵有限個の開集合で覆いきれない閉区間列と仮定しているので、もし空ならひとつの開集合で覆えてしまう)、いまSiの元をsiと記すことにします。(i=1,2,…)
m>nのときsm∈Sm⊂Snでありsn∈Snだから|sm-sn|≦(1/2)^(n-1) が成立。(Snの区間の長さは、作り方によりS0が2でS1が1でS2が1/2…となっているから)

よって、点列snはコーシー列を成すことがわかる。実数の完備性により点列snの極限が存在する。それをsとおく。(つまりlim sn = s)



このとき∩Sn={s}が成立。

証明:

(∩Sn⊃{s}について) nを任意に与えられた自然数とする。m≧nとなる任意の自然数mに対し、sm∈Sm⊂Snが成立。Snが閉区間であるのでs=lim sm ∈Sn が成立。ゆえに∩Sn⊃{s}が成立。

(∩Sn⊂{s}について) x∈∩Snとする。すると任意の自然数nに対しx∈Snである。ここで、上で示したように∩Sn⊃{s}が成立しているから、s∈Snである。よって|x-s|≦(1/2)^(n-1)が成立。nは任意であったので、|x-s|=0でなくてはならない。よって、x=s∈{s}である。

No1です。

閉区間列S1、S2、…、Sn、…はいずれも空でありませんから(∵有限個の開集合で覆いきれない閉区間列と仮定しているので、もし空ならひとつの開集合で覆えてしまう)、いまSiの元をsiと記すことにします。(i=1,2,…)
m>nのときsm∈Sm⊂Snでありsn∈Snだから|sm-sn|≦(1/2)^(n-1) が成立。(Snの区間の長さは、作り方によりS0が2でS1が1でS2が1/2…となっているから)

よって、点列snはコーシー列を成すことがわかる。実数の完備性により点列snの極限が存在する。それをsとおく。(つまりlim sn = s)



...続きを読む

Q開集合がコンパクトでない理由

コンパクトとは、有限と無限に関するもの(有界閉集合)である
ことは何となく分かっているつもりです。

しかし、開集合がコンパクトでない理由がいまいち分かりません。
たとえば、よく教科書に掲載されている例として
開区間(-1,1)を、Xn=(-n/(n+1),n/(n+1)) (n∈N)  ※Nは自然数全体
で覆うというものがあり、これは有限部分被覆を持たないというものです。

でも、Xnの最後は(-1,1)なので、この一つをとりだせば
それだけで有限被覆となると思います。
この矛盾はどこから来るのか分かりません。

どなたか、ご教授ねがいます。

Aベストアンサー

>(-1,1)にならないといことは、やはり、Xnは(-1,1)の開被覆ではないということになってしまいます。

なりません.質問者はεδや無限に対する理解が
かなり怪しいのでしょう.

(-1,1)にならなくたって被覆です.
たとえば,εを-0.99999 にしましょう.
nをものすごーく大きくする,たとえば, n=100000にすると
n/(n+1)=0.999990000099...
となるので
(-n/(n+1),(n/(n+1))にεは含まれるのです.
(-1,1)に含まれるどんな数をもってきても
このようにその数を含む(-n/(n+1),(n/(n+1))を
必ずとることができます
#ε=n/(n+1)をnについてといて
#それ以上の整数をとればよい.

したがって,{Xn}は(-1,1)の開被覆です.

しかし,どんなにがんばっても有限個で覆うことはできません.
有限個でとめたとしたら,
n/(n+1)は1にはなれないので,n/(n+1)と1の間の数が
こぼれてしまうのです.
こういうのを「稠密性」というのでした.

ちなみに
>コンパクトとは、有限と無限に関するもの(有界閉集合)である
>ことは何となく分かっているつもりです。
この理解は明らかな誤りですので
正しく理解しましょう.
有限と無限,有界はそれほどは関係しません.
ちなみに,コンパクトと有界閉集合は別の概念であり,
ある特定の条件において同値であるということも
理解しましょう.

>(-1,1)にならないといことは、やはり、Xnは(-1,1)の開被覆ではないということになってしまいます。

なりません.質問者はεδや無限に対する理解が
かなり怪しいのでしょう.

(-1,1)にならなくたって被覆です.
たとえば,εを-0.99999 にしましょう.
nをものすごーく大きくする,たとえば, n=100000にすると
n/(n+1)=0.999990000099...
となるので
(-n/(n+1),(n/(n+1))にεは含まれるのです.
(-1,1)に含まれるどんな数をもってきても
このようにその数を含む(-n/(n+1),(n/(n+1))を
必ずとること...続きを読む

Q閉包と集積点と内部

閉包と集積点と内部(及び境界)の関係を、初心者でもわかるように教えていただけないでしょうか。特に、それらが集合において何を意味しているのかを教えていただけないでしょうか。

閉包A ̄は、
任意のxの近傍V(x)において、V(x)∩A≠φ(φは空集合)であるxの集合
集積点a(A)は、
T∩(A-{x})≠φとなるxの集合
(Aの相違な元列が1点Pに近づくときのPのこと…?)
内部i(A)は、
Aに含まれる位相空間(X,τ)の開集合全体の和集合である。i(A)={a∈A:V(a)⊂Aとなる近傍V(a)が存在する}

Aベストアンサー

>現段階で、位相はある全体集合の中に、ある決まりに基づいた開集合、閉集合を規定すること?と理解しています。

それは正しいのですが,もしかして集合には
開集合と閉集合しかないと思ってませんか?
閉集合の定義はたしかに「開集合の補集合」ですが,
それは決して
「開集合ではない集合を閉集合という」
という意味ではありません.
これは初心者がよくおかす勘違いです.

例:
(0,1] は開集合でも閉集合でもない
(0,1] の内点集合は (0,1)
(0,1] の閉包は [0,1]
(0,1] の集積点からなる集合は [0,1]
(0,1] の境界は {0,1}

自分で具体例を構築する訓練をしてください.
非数学科の方が応用が主眼なので,より複雑なものが
でてくる傾向があります.
#顕著な例は,金融方面の確率偏微分方程式とか
#工学系だと,なにかの状態空間の議論かな,位相とか使いそうなの.

Q有界閉区間であることの証明

閲覧ありがとうございます。
以下の問題が分かりません。

http://i.imgur.com/NCS1q3U.jpg

恥ずかしながら、どのように解けばいいか、解答の方針すら立たない状況です。
特に、iに関しては証明するまでもなく当たり前ではないか?と思ってしまいます。

分かる方、どうか教えていただけないでしょうか。解説の方、よろしくお願いいたします。

Aベストアンサー

定義域の端点が、値域の最大・最小に対応したりする場合は、イメージしやすいし、そうでなくてもグラフを描けば、正しいだろうという検討はつきますね。ただ、証明は別ですから、、。

定理をいくつか使ってよいなら、次のステップですぐ証明は出ます:
有界閉区間Iはコンパクトである。
コンパクト集合から実数の集合への連続関数は、最大値a、最小値bをもつ。
a=bなら、特殊な有界閉区間。そうでないとすると、
aとbとの間の任意のcに対して、中間値の定理より、f(x)=cとなるIの元xが存在する。
よって、f(I)=[a,b]となるとか、、、。


使える定理からあまりすぐ証明できると練習にならないので、例えばR^nの有界閉区間I(各座標軸で有界閉区間の直積集合)上の連続実数値関数fの像f(I)は有界閉区間になることを証明せよ、、、くらいがいいかもです。もっと一般的に定義域がコンパクトで連結の時、、、くらいにしても(結論は正しいですか?)、位相の練習問題ならいいかもです。

Q部分群であることの証明

部分群であることの証明
Gを群、Hをその部分集合とし、a,b∈Gに対し、「a~b⇔ab^(-1)∈H」なる~ が同値関係であるとする。このとき、HはGの部分群であることを証明してほしいです。

部分群であることを証明するには、(1)結合法則が成り立つこと(2)単位元の存在(3)逆元の存在が言えればいいこと、
同値関係の定義については理解しています。

ですが証明文を書くことができず、困っています。


回答よろしくお願いします。

Aベストアンサー

えっと、同値の関係は、それでいいと思いますよ。

「結果的に同じことになった」と前にも書いたかな?

この問題では二つの同値 ~ と ⇔ がでてきているけれど、

両方とも、本来の意味として、結果的に同じになっているで、構いませんよ。

で、例に挙げた群だけど。。

実数全体(0を除く) (以下、R0 と書くことにしますね)と

演算子掛け算 × を持ってくると、群の定義は?

単位要素の存在、逆要素の存在、結合則の成立だよね。

R0の中から、好きな二つを取ってきます。

何でも構いません。掛け算した答えは、必ず実数になりますね。

 #無理数も実数だからね。虚数にならなければいい。

ここで二項代数として成立。

単位要素は、「1」ですね。 任意のR0∋c について、

c×1=c 動かないので単位要素だね。

逆要素は、c^(-1)だね。 c×(1/c)=1 単位要素に帰るわけだから。

 #0をどけたのは、これができないから。

例) c=√2 のとき c×c^(-1)=√2/√2 =1

無限に要素があるけど、これはすごく簡明な群なんだけどな・・・。

この場合は数値になるから、Hもとりやすいと思うけれども。

取ってみてくれるかな? そしたら少しつかめると思うけど。


そしてね、どっかでこれ見たことあるなぁ~と思ってました。

「群論への30講」 志賀浩二 著 朝倉出版

この、第八項に同じのがある。

出身が電気工学で、この本で独学したんだ(^^;)

本屋さん(大きな)に行く機会があったら、捜してみて?

もう結構古いから、絶版かもしれないけれど。


代数を専門とされてはいないのかな。ちょっと出てきたと言う感じかな?

群 って言うのをもう少し分かってからのほうがいいのかもしれない問題かもね?

かじるくらいにしては、少し難しいかもしれない。


でもね、例に挙げたのが群だと思って、そこから部分群になるようにHの要素を

持ってきてみて?

それができると、ある程度見晴らしがでてくると思う。

えっと、同値の関係は、それでいいと思いますよ。

「結果的に同じことになった」と前にも書いたかな?

この問題では二つの同値 ~ と ⇔ がでてきているけれど、

両方とも、本来の意味として、結果的に同じになっているで、構いませんよ。

で、例に挙げた群だけど。。

実数全体(0を除く) (以下、R0 と書くことにしますね)と

演算子掛け算 × を持ってくると、群の定義は?

単位要素の存在、逆要素の存在、結合則の成立だよね。

R0の中から、好きな二つを取ってきます。

何でも構いません...続きを読む

Q同型とは?

複素解析の本に
『複素数からその共役にうつる演算は体Cの1つの自己同型である』
とか
『体Cの同型で部分体Rの元を動かさないものはα→α(つまりなにも動かさぬ同型)とこの共役に限る』
とあるんですが、『同型』という言葉の定義について何も書いてありません。

同型とはなんですか?

Aベストアンサー

2つの体KとLが同型というのは、
KとLが同じ構造をしている
ということで、ぶっちゃけた話
KとLは同じものだと思ってもさしつかえないよ
ということです。
(これは私の同型というものに対するイメージです。)

厳密には、
2つの体KとLが同型というのは、KからLへの同型写像がある
というもので、同型写像とは
全単射な準同型写像
のことです。
KからLへの準同型写像とは
任意のa,b∈Kに対し f(a+b)=f(a)+f(b),f(ab)=f(a)f(b)
を満たすKからLへの写像(関数)fのことです。

例を1つ。
R^2={(x,y)| x,yは実数}と複素数体Cは同型です。
R^2からCへの写像fを
f(x,y)=x+iy (iは虚数単位)
と定めるとfは同型写像になるからです。
R^2とCは同型なのですから
R^2とCはほとんど同じものだと考えてよいことになります。

また、自分から自分への(つまりCからCとか)の同型写像を
自己同型写像、あるいは略して自己同型といいます。
f(x+iy)=x-iy というある複素数をその共役に写すという写像fは
自己同型写像になりますよ、というのが
>『複素数からその共役にうつる演算は体Cの1つの自己同型である』
の述べていることです。

詳しく知りたいのでしたら代数学の本をひもとく必要がありますが、
そこを理解しないと先へ進めないということもないでしょうから、
(というのは質問にある『体Cの同型でうんぬんなんてのは
複素解析を学ぶ上でははっきり言ってどうでもいいことだからです)
頭の片隅にでも残しておいて飛ばしてもいいと思いますよ。

2つの体KとLが同型というのは、
KとLが同じ構造をしている
ということで、ぶっちゃけた話
KとLは同じものだと思ってもさしつかえないよ
ということです。
(これは私の同型というものに対するイメージです。)

厳密には、
2つの体KとLが同型というのは、KからLへの同型写像がある
というもので、同型写像とは
全単射な準同型写像
のことです。
KからLへの準同型写像とは
任意のa,b∈Kに対し f(a+b)=f(a)+f(b),f(ab)=f(a)f(b)
を満たすKからLへの写像(関数)fのことです。

例を...続きを読む

QC1級関数って何ですか?

級数の勉強をしていると、
” C1級数関数 ”
(※ 1はCの右上の小さい文字。表記できませんでした。)
という用語が出てきたのですが、どういう意味なのかわかりません。
どういう関数なのか教えてください。

Aベストアンサー

こんにちは.Esnaです.

C1級は,1回微分可能な関数のことです.
Cn級や,C∞級(e^x,sin x など)など微分可能回数によって関数を分類したものです.


人気Q&Aランキング

おすすめ情報