出産前後の痔にはご注意!

大学で無期の基礎を学んで入るものです。

ペロブスカイト構造をとるCaTiO3でのCaの価数又は配位数の出し方を教えてくださいm(__)m

このQ&Aに関連する最新のQ&A

A 回答 (2件)

無機に関しては素人ですが、回答を。


CaTiO_3の価数ですが、基本的にOは2‐とするのでCa^2+、Ti^4+でしょうね。
配位数は結晶構造を見る限り、Tiは6配位で正八面体構造に成ると思います。Caの配位数はよく分かりません。Caの周りに等距離でOが12個もあるので、逆に配位数0と考えるべきなのかも知れません。

参考URL:http://ja.wikipedia.org/wiki/%E3%83%9A%E3%83%AD% …
    • good
    • 0
この回答へのお礼

ありがとうございます!
回答に役立てます(・∀・)

お礼日時:2008/12/15 12:35

CaTiO3=CaO・TiO2である。



Caは12個のOに囲まれる
Tiは6個のOに囲まれる
Oは4個のCaに囲まれる
Oは2個のTiに囲まれる
    • good
    • 1
この回答へのお礼

回答ありがとうございました!!

参考にしながら構造を考えたいと思います!

お礼日時:2008/12/30 15:08

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q格子定数の求め方教えてください!!

こんにちは。
僕は、結晶学を勉強している大学生です。
現在、斜方晶構造の格子定数を算出しようと勉強しているのですが格子定数a, b, cを求める式を作ることができません。ご存知の方教えて教えて下さい。
斜方晶の関係式は以下のようになります。
1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2
d, h, k, lの値は既知でa=,b=,c=の式を教えていただきたいです。
また、格子定数を簡単に求められるソフトなどをお知りであれば教えて下さい。
どうかよろしくお願いいたします。

Aベストアンサー

> 格子定数a, b, cを求める式を作ることができません。

これは初等数学の教えるとおり,線形独立な(=異なる面方位の)3つ以上の関係がない限り,どうやっても求まりません。線形独立な式が3つあるなら,三元一次連立方程式を解けばよいだけです。

> 斜方晶の関係式は以下のようになります。

斜方晶だけでなく,正方晶でも立方晶でも成り立ちます。

> 格子定数を簡単に求められるソフト

XRD などのブラッグの回折パターンから格子定数を精密に求めるには,通常,リートベルト解析という計算を行います。RIETAN というソフトが有名です。ただ,大雑把で良くて,点群が分かっていて面指数まで分かっているなら,電卓で十分計算できると思います。

Q分光化学系列と配位子場分裂 高スピンか低スピンか?

只今錯体の勉強をしています。
配位子場理論において、金属と配位子の軌道の相互作用によって、配位子場分裂(Δ)することはわかりました。この時の「エネルギーΔ」と、電子が同一軌道にスピン対をつくって入る際の「電子間反発エネルギー」の大小により、金属のd軌道の電子配置が高スピンになるか低スピンになるか、理解することはできました。

配位子場分裂(Δ)の大きさは、分光化学系列に則った配位子の違いによるものと記憶しています。

また一般に第一遷移金属元素に比べ第二、第三の方が低スピンになると教科書(シュライバーよりかなり大まかです)には書いてありました。

ここで疑問なのですが例えば、[Co(en)3]3+という錯体について考えたとき、Δ及び電子間反発エネルギーの具体的は値、または大小関係が分からなくても、分光化学系列と第何遷移金属といった情報だけで、Coのd軌道の電子は高スピン、低スピンどちらか分かるものなのでしょうか?

つまるところ、金属の種類ごとに、分光化学系列で真ん中(H2O)辺りより左側の配位子は低スピンになる~といったaboutな予測はできないのでしょうか?

また、もう一点、分光化学系列は大まかにC>N>O>Xとなっていますが、なぜでしょうか?配位子と金属のπ軌道の相互作用という面では理解できましたが、以下の説明がわかりません。
「配位子の電気陰性度が増加し、金属にσ供与するエネルギー準位が低下するので、この軌道と金属のσ対称性のeg*軌道とのエネルギー差がC,N,O,Xの順に大きくなり、その結果軌道相互作用が小さくなってΔが小さくなる」

大変長く、またわかりにくい文章となってしまいましたが回答お願いします。

只今錯体の勉強をしています。
配位子場理論において、金属と配位子の軌道の相互作用によって、配位子場分裂(Δ)することはわかりました。この時の「エネルギーΔ」と、電子が同一軌道にスピン対をつくって入る際の「電子間反発エネルギー」の大小により、金属のd軌道の電子配置が高スピンになるか低スピンになるか、理解することはできました。

配位子場分裂(Δ)の大きさは、分光化学系列に則った配位子の違いによるものと記憶しています。

また一般に第一遷移金属元素に比べ第二、第三の方が低スピンに...続きを読む

Aベストアンサー

> 金属の種類ごとに、分光化学系列で真ん中(H2O)辺りより左側の配位子は低スピンになる~といったaboutな予測はできないのでしょうか?

できます。

配位子の分光化学系列ほど有名ではありませんけど、金属イオンの分光化学系列というものがありまして

 Mn2+ < Ni2+ < Co2+ < Fe2+ < V2+ < Fe3+ < Co3+

の順で配位子場分裂Δが大きくなります。[Co(en)3]3+について考えると、Co3+はΔが大きくなるイオン、enはΔがそこそこ大きくなる配位子なので、[Co(en)3]3+は低スピン錯体になることがわかります。

おおざっぱには
 Mn2+はNO2とCNの間、
 Co2+はphenとNO2の間、
 Fe2+はenとbpyの間、
 Fe3+はH2Oとenの間、
 Co3+はFとH2Oの間、
に高スピン錯体と低スピン錯体の境界線があります。

Mn3+とCr2+はヤーン-テラー効果のために正八面体構造からずれるので少し厄介で、これらのイオンはふつう金属イオンの分光化学系列には含めません。Mn3+では高スピンになる錯体がほとんどで、低スピンになるのは[Mn(CN)6]4-くらいです。Cr2+では、[Cr(en)3]2+が高スピン、[Cr(bpy)3]2+が低スピンになるので、Fe2+とだいたい同じところに境界線があると考えればいいです。Ni3+は、事実上すべて低スピン錯体になります。

> 分光化学系列は大まかにC>N>O>Xとなっていますが、なぜでしょうか?

配位子のπ軌道と金属のd軌道との相互作用のためです。金属にσ供与する軌道のエネルギー準位の違いは、分光化学系列にはあまり影響しません。このことは、ハロゲンの順序が F>Cl>Br>I になっていることから分かります。もしσ供与する軌道のエネルギー準位の違いが分光化学系列を決めているのならば、I>Br>Cl>Fの順になるはずです。ふつうは、「F→Iの順にΔが小さくなるのは、F→Iの順にπ供与性が強くなるからだ」という説明がなされます。

> 以下の説明がわかりません。
> 「配位子の電気陰性度が増加し、金属にσ供与するエネルギー準位が低下するので、この軌道と金属のσ対称性のeg*軌道とのエネルギー差がC,N,O,Xの順に大きくなり、その結果軌道相互作用が小さくなってΔが小さくなる」

金属にσ供与する配位子のエネルギー準位は、金属のd軌道よりも低いところにあります。配位子のエネルギー準位が低くなれば低くなるほど、金属のd軌道とのエネルギー差が大きくなるので、軌道相互作用が小さくなってΔが小さくなります。配位子のエネルギー準位は配位子のイオン化エネルギーの符号を変えたものなので、配位子の電気陰性度が増加するほど低くなります。

> 金属の種類ごとに、分光化学系列で真ん中(H2O)辺りより左側の配位子は低スピンになる~といったaboutな予測はできないのでしょうか?

できます。

配位子の分光化学系列ほど有名ではありませんけど、金属イオンの分光化学系列というものがありまして

 Mn2+ < Ni2+ < Co2+ < Fe2+ < V2+ < Fe3+ < Co3+

の順で配位子場分裂Δが大きくなります。[Co(en)3]3+について考えると、Co3+はΔが大きくなるイオン、enはΔがそこそこ大きくなる配位子なので、[Co(en)3]3+は低スピン錯体になることがわかります。
...続きを読む

Q配位子場安定化エネルギー???

次の金属イオンが高スピン型の八面体形と四面体形錯体をつくるとき、両者の配位子場安定化エネルギーの差を計算せよ。ただし、Δ_t=(4/9)Δ。とする。
(1)Cr2+ (2)Mn2+ (3)Fe2+

という問題で、(上の問題文が見づらいようでしたら
https://drive.google.com/file/d/0B5GeO_NHMdeRMm82OUhOMmFabzA/edit?usp=sharing
をご覧ください。全く同じ問題文です)

解答は
https://drive.google.com/file/d/0B5GeO_NHMdeRSXlPQWZOdFVNS1k/edit?usp=sharing
です。
解答を見てもちんぷんかんぷんです。

問題文に出てくるデルタのような記号Δは何ですか? 扱っている教科書に出てきません。意味も読み方もわかりません。添え字の t と o も何なんでしょうか。解答に oct と tet がありますからこれのことなんでしょうけど、何の単語の頭文字でしょうか。

LSFE も???です。こちらはまだ教科書で探してみていないので、ひょっとしたら載っているかもしれませんが。

次の金属イオンが高スピン型の八面体形と四面体形錯体をつくるとき、両者の配位子場安定化エネルギーの差を計算せよ。ただし、Δ_t=(4/9)Δ。とする。
(1)Cr2+ (2)Mn2+ (3)Fe2+

という問題で、(上の問題文が見づらいようでしたら
https://drive.google.com/file/d/0B5GeO_NHMdeRMm82OUhOMmFabzA/edit?usp=sharing
をご覧ください。全く同じ問題文です)

解答は
https://drive.google.com/file/d/0B5GeO_NHMdeRSXlPQWZOdFVNS1k/edit?usp=sharing
です。
解答を見てもちんぷんかんぷんです。

問題文に出てくるデ...続きを読む

Aベストアンサー

> 問題文に出てくるデルタのような記号Δは何ですか?

配位子場分裂パラメーターです。

> 添え字の t と o も何なんでしょうか。

それぞれ tetrahedral と octahedral の頭文字です。

> LSFE も???です。

LSFEではありません。LFSEです。Ligand Field Stabilization Energy の略です。日本語でいうと配位子場安定化エネルギーです。

> 解答を見てもちんぷんかんぷんです。

Cr2+の八面体形錯体の場合は、以下のようにLFSEを計算します。

Crは周期表第6族の元素だから、これの2価イオンのd電子数は6-2=4個。高スピン型だからエネルギー準位の低い軌道(t2g軌道)に3個電子を詰めた後に、エネルギー準位の高い軌道(eg軌道)に残りの1個の電子を詰める。t2g軌道の電子のエネルギーは電子1個あたり(-2/5)Δoで、eg軌道の電子のエネルギーは電子1個あたり(+3/5)Δoだから、LFSEは
(-2/5)Δo×3+(+3/5)Δo×1=(-3/5)Δo
となる。

他も同様です。がんばって下さい。

> 問題文に出てくるデルタのような記号Δは何ですか?

配位子場分裂パラメーターです。

> 添え字の t と o も何なんでしょうか。

それぞれ tetrahedral と octahedral の頭文字です。

> LSFE も???です。

LSFEではありません。LFSEです。Ligand Field Stabilization Energy の略です。日本語でいうと配位子場安定化エネルギーです。

> 解答を見てもちんぷんかんぷんです。

Cr2+の八面体形錯体の場合は、以下のようにLFSEを計算します。

Crは周期表第6族の元素だから、これの2価イオンのd電子数は6-2...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q水の標準蒸発エンタルピー

H2O(l)→H2O(g)のとき
標準蒸発エンタルピーΔvapH゜(373K)=+40.66kJ/molとでますが
どの文献を調べても計算方法が載っていませんでした。
どのように計算すれば標準蒸発エンタルピーを求めることができるのでしょうか
またΔvapH゜(373K)の(  )内の温度が473K、はたまた1273Kでも計算できるのでしょうか
よろしくお願いします

Aベストアンサー

水の標準蒸発エントロピーの計算方法はClausius-Clapeyronの式で求めることができます。ln(P/P0)=-(ΔHv/R)(1/T)+(ΔSv/R)がClausius-Clapeyronの式です。まず、さまざまな圧力Pにおける沸点Tのデータ5個ぐらいを文献で調べます。(水なら化学便覧に載っています)これをExcelを用いて、PとTをそれぞれln(P/P0)と(1/T)にします。P0は大気圧で、Pの単位と同じにします。(1atm=760mmHg=1.01315×10^5Pa=760Torr(正確に))次に、ln(P/P0)を縦軸に、(1/T)を横軸にとり、プロットします。(excelでは図の挿入)そうすると、一次関数が得られると思うので、その傾きからΔHvが、切片からΔSvを求めることができます。

また、H=H(P,T)、つまりエンタルピーは圧力と温度の関数です。標準エンタルピーはH0=H(1atm,T)と定義されています。すなわちΔvapH0は(1気圧における)標準蒸発エンタルピーということを表しています。1気圧における水の沸点は約100度なので、かっこ内に、373と書いてあるのです。そのため473K,1273Kとなる場合はないです。

水の標準蒸発エントロピーの計算方法はClausius-Clapeyronの式で求めることができます。ln(P/P0)=-(ΔHv/R)(1/T)+(ΔSv/R)がClausius-Clapeyronの式です。まず、さまざまな圧力Pにおける沸点Tのデータ5個ぐらいを文献で調べます。(水なら化学便覧に載っています)これをExcelを用いて、PとTをそれぞれln(P/P0)と(1/T)にします。P0は大気圧で、Pの単位と同じにします。(1atm=760mmHg=1.01315×10^5Pa=760Torr(正確に))次に、ln(P/P0)を縦軸に、(1/T)を横軸にとり、プロットします。(excelでは図の挿入)そうする...続きを読む

Qヤーンテラー効果について

ヤーンテラー効果について勉強したのですがよく分かりません。もし分かりやすく説明してくれる方がいればよろしくお願いします。

Aベストアンサー

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四面体配位は例が少ないので省略します).例えば,Fe錯体なんかはたいてい八面体配位(配位子が6個)って教わりましたね.しかし,Cu錯体やPt錯体などはなぜか正方形の配位をとります.本来であれば,八面体配位をとったほうがよさそうな感じがしますよね.だって,FeとCuって電子が3つしか違わないから.

ここで,Jahn-Teller効果にもとづく正方晶ひずみという効果が生じてきます.これって何かというと,z軸方向の配位距離(金属と配位子との距離)が伸び,xy方向の配位距離が縮まるのです.つまり,八面体を横からグシャッとつぶして縦にビヨーンと引っ張った感じになります.

このような傾向は,d軌道の電子が多いほど起こりやすくなります.
こうやって,もしもz軸方向の配位距離が無限に伸びてしまったら?そう,z軸方向の配位子はどっかに飛んでいってしまい,結果として正方形状に並んだ4つの配位子だけが残ります.

つまり,「Cu錯体が正方形配位であるのは,八面体がひずんでz軸方向の配位子がなくなったからである」といえましょう.


しかし,「なんでd軌道の電子が増えるとz軸方向に伸びるの?」と思われますよね.これは電子軌道理論で説明できます.
八面体のときは,d軌道は3:2に分裂してますよね.低エネルギーで縮退している3軌道はdxy,dyz,dzxで,高エネルギーのそれはd(xx-yy),dzzです.さて,d軌道の電子が増えると,実は二重および三重に縮退していた軌道が分裂して,2:1:1:1とこま切れになってしまいます.具体的には,z因子を含む軌道(dyz,dzx,dzz)の3つのエネルギーが低下します.(なんでそうなるのかについてはムズカシイので省略させてください)


う~ん,なにやらムズカシイお話になってしまいましたね.
でも,「d軌道の縮退が変化する=配位の形も変化する」ということはなんとなく予想できますよね.これを理論的に説明したのがJahn-Teller効果です.


こんな稚拙な説明でわかっていただけたでしょうか.
もし,「この文章のここがよくわからない」などがありましたら,補足をお願いいたします.また,これ以上の内容についてはShriver(シュライバー)著『無機化学』p.354あたりに書いてあるので,そちらをご覧ください.

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四...続きを読む

Q標準自由エネルギー変化について教えてください。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-AとするとAが大きいほど反応は進みやすのでしょうか?(これ本当に分かりません・・)

自由エネルギー変化ΔGについてです
ΔG=ΔG゜+RTlnK
aA+bB⇔cC+dDと言う反応ではモル分圧平衡定数とするとK=([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)
です。
質問4:そもそもΔGとは何を表現しているのですか?平衡だとΔG=0となる。これはどういうこと?
質問5:ΔG゜=-RTlnKですが、通常ΔGというとみんなこの方法で算出してしまいます。ここで標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGをごっちゃにするとエライ事になりそうですが・・・
質問6:ΔG=ΔG゜+RTln([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)でよく25℃、1atmの濃度や分圧を入れてΔGを出してますが、これはどう解釈したらよいのでしょうか?その濃度や分圧のときの自由エネルギーということ?でもそれなら25℃、1atmの生成ΔGfから算出したΔG゜とΔGが同じにならないとおかしくありませんか?
質問:そもそも上記の考え方にどこかおかしいから悩んでいるので、指摘していただけたら幸いです。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-Aとすると...続きを読む

Aベストアンサー

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べるのは大変なので
変化量を指標に用いていることは同じですが、標準生成自由エネルギーは、すべての元素が標準状態にあるとき自由エネルギーを0として、それらの単体から生成される化合物を上記の式を使って計算した物です。

反応が自発的に進むためにはΔGがマイナスでなければなりません。
ΔGは自由エネルギー変化です。
標準生成自由エネルギーΔG゜とは違います。
-RTlnK=ΔG゜ という関係から ΔG゜が負の時はKが1よりも大きい事を意味し、正の時には、その反応が進まないということではなくKが1よりも小さいことだけを意味します。
ΔG゜が大きな正の値をとるとKは著しく小さくなり、平衡点は原系の方に極端に片寄ることを意味しています。
ΔG゜=0ならばK=1ということです。

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べる...続きを読む

Q電子配置について

Ni2+(ニッケルイオン)の電子配置と不対電子を示せという問題で僕は、[Ar]3d64s2と考えたのですが・・・答えは[Ar]3d8となっています。電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?よくわからないので教えてください。

Aベストアンサー

> 電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?
中性の原子では、そうなりますね(CrとCuは例外)。
ですけど、イオンではそうはならないです。

■考え方その1
遷移金属の陽イオンでは、3d軌道が満たされてから4s軌道に入る、と考えます。これらのイオンの4s軌道はふつう空っぽになりますから、第4周期の1族~12族の金属イオンでは、
 3d電子の数=族番号-イオンの価数
という公式が成り立ちます。

■考え方その2
あるいは、中性の原子を基準に考えて、
 軌道から電子が抜けるときには、4s軌道から先に抜ける。
と覚えるのもいいです。

■Ni2+の場合
はじめの考え方に従うと、ニッケルは10族、イオンの価数は2なので、
 3d電子の数=10-2=8
となって、電子配置は[Ar]3d8になります。
 二番目の考え方では、中性のニッケル原子の電子配置[Ar]3d84s2から、電子を2個抜いたのが2価ニッケルイオンなので、4s軌道から電子を2個抜くと、イオンの電子配置は[Ar]3d8になります(Ni3+ならNi2+の電子配置からさらに1個電子を抜いて、[Ar]3d7になります)。

■考え方が破綻する例
Ca+,Sc+,Ti+,V+,Mn+,Fe+,Co+,Ni+,Zn+では、これらの二つの考え方から導かれる答えは一致しません。例えば、考え方その1ではNi+の電子配置は[Ar]3d9になりますが、考え方その2ではNi+の電子配置は[Ar]3d84s1になります。しかしこれらの1価の陽イオンは、きわめて特殊な条件下でしか生成しませんので、通常これらの電子配置が問題になることはありません。
 第4周期の1族~12族の1価金属イオンで重要なものは、K+とCu+です。この二つのイオンに関しては、考え方その1でも考え方その2でも、正しい電子配置を与えます。

■なぜ中性原子とイオンで電子の詰め方が変わるのか?
カリウム(原子番号19)とカルシウム(原子番号20)では、4s軌道の方が3d軌道よりもエネルギーが低いのですけど、じつは、原子番号が20より大きい原子では、エネルギーの順序が逆転して、4s軌道よりも3d軌道の方がエネルギーが低くなります。
 ですので、「エネルギーが低い軌道から電子を詰めていく」というルールに従えば、Sc,Ti,V,Cr,Mn,...では、4s軌道よりも先に3d軌道に電子を詰めていくことになるのですけど、こうやって作った電子配置は、中性原子(と多くの一価イオン)では、正しい電子配置にはなりません。つまり、原子番号が20より大きい中性原子では、「エネルギーが低い軌道から電子を詰めていく」というルールだけでは、正しい電子配置を予測することができません。
 この困難を乗り越えるためには、本当ならば、「電子と電子の間に働くクーロン反発力」を考えに入れなければならないのですけど、これが結構めんどうな話になります。そこで、めんどうな話を避けるために、少し反則気味なのですけど、「エネルギーが低い軌道から電子を詰めていく」というルールだけを使って正しい電子配置を予測できるように、『原子番号が20より大きい原子でも、4s軌道の方が3d軌道よりもエネルギーが低い』ということにしておいて、4s軌道が満たされてから3d軌道に電子が入る、という説明がなされます。
 陽イオンでは、中性原子に比べて電子が少なくなっていますので、電子と電子の間に働くクーロン反発力は、中性原子のそれと比べて小さくなります。そのため、クーロン反発の話を無視しても、正しい電子配置を得ることができます(一価の陽イオンは除く)。本来、4s軌道よりも3d軌道の方がエネルギーが低いのですから、3d軌道が満たされてから4s軌道に電子が入る、ということになります。

■まとめ
中性原子では、4s軌道の方が3d軌道よりもエネルギーが低いので、4s軌道が満たされてから3d軌道に電子が入る。
陽イオンでは、4s軌道よりも3d軌道の方がエネルギーが低いので、3d軌道が満たされてから4s軌道に電子が入る。
中性原子と陽イオンで軌道の順序が変わるのは、電子と電子の間に働くクーロン反発力が陽イオンでは小さくなるからである。

> 電子軌道は4s軌道が満たされてから3d軌道に入るのではないのですか?
中性の原子では、そうなりますね(CrとCuは例外)。
ですけど、イオンではそうはならないです。

■考え方その1
遷移金属の陽イオンでは、3d軌道が満たされてから4s軌道に入る、と考えます。これらのイオンの4s軌道はふつう空っぽになりますから、第4周期の1族~12族の金属イオンでは、
 3d電子の数=族番号-イオンの価数
という公式が成り立ちます。

■考え方その2
あるいは、中性の原子を基準に考えて、
 軌道から電子が...続きを読む

Q格子点数と原子数

結晶について学んでおります。
まず、格子点数と原子数の違いが分かりません。

それで、diamondの単位格子の格子点数、原子数を求めようとしたときに、はたと困りました。
まず、diamondのブラベー格子がFである、そのことから、理解ができませんでした。
diamondは、fccを1/4,1/4,1/4ずらしたものの組み合わせだということは知っています。そこからdiamondのブラベー格子がFであるとなるのでしょうか。

ごめんなさい。。書いてて混乱してきました。。意味がとれない部分もあると思いますが、教えてください。

Aベストアンサー

まず結晶格子とは、空間の三方向に等間隔で並んだ点の集まりのことです。
そしてどんな複雑な結晶構造でも、「結晶格子×単位構造」からできています。
このことを少しずつ説明してみたいと思います。

単純立方格子(primitive cubic; cP)は一番わかりやすいと思いますが、ジャングルジムのように
立方体をたくさん詰め込んだような形をしています。ただし、格子とはあくまでも立方体の頂点の
部分だけの集合なので、フレームの部分は含みません。この頂点一つ一つのことを格子点と言います。
8個の格子点を結んでできる、対面が平行な六面体のことを単位胞または単位格子といいます。
単位胞は繰り返しのユニットとなります。先ほど格子はフレームを含まないと言いましたが、
それはこの結び方(単位胞の決め方)が自由であるということです。星座みたいなものだと思って下さい。
べつに菱餅のような形に結んでもいいんですが、ふつうはもっとわかりやすい(対称性の高い)立方体
などの形になるように結びます。

「単純立方格子の単位胞(立方体)にはいくつの格子点が含まれるか」という問題には
1と答えます。なぜ8ではないかというと、立方体の頂点に全て格子点があると考えると、
繰り返し並べた時に別々の立方体から来た8個の格子点が一カ所にかぶってしまうからです。
ですからそれぞれの立方体について8つの頂点のうちたとえば左下手前のものだけをその立方体に
所属する格子点と考えれば1になるわけです。そこを原点O(0,0,0)にとります。

単純立方格子をとる結晶構造のうちもっともシンプルなのは単純立方構造(simple cubic; sc)です。
これは単位胞の頂点の位置だけに一種類の原子を置いた構造で、ポロニウムのα相がこの構造です。
「格子」と「構造」はどう違うのかと思われるかもしれませんね。実際には同一視されている解説が
ほとんどですが、格子はまだ原子(やイオン)を置く前の、単なる位置の基準点の集合です。
単位胞の中に原子を置いて初めて構造になります。これが「結晶格子×単位構造=結晶構造」の意味です。
scの場合は「単純立方構造の単位胞にはいくつの原子が含まれるか」の答も1となります。

他には塩化セシウム型構造が単純立方格子です。これはセシウムイオン(Cs+)を単純立方格子の
原点(0,0,0)に置いたとき、塩化物イオン(Cl-)が立方体の中央(1/2,1/2,1/2)にくる構造です。
Cs+(0,0,0)とCl-(1/2,1/2,1/2)のペアが単位構造であり、それが各単位胞の中にあるということです。
別の見方をすればCs+だけでできた単純立方構造とCl-だけでできた単純立方構造を(1/2,1/2,1/2)だけ
ずらして重ねたと考えることもできます。しかし、あくまでも塩化セシウム構造としての単位胞は
どちらか片方だけですから、単位胞内の格子点数は1のままで原子数は2となります。

やっとダイアモンド構造に近づいてきました。ダイアモンド格子は面心立方格子(cF)をとります。
単純立方格子と比べると立方体の中にあらかじめ
 O(0,0,0)、A(0,1/2,1/2)、B(1/2,0,1/2)、C(1/2,1/2,0)
の4か所に格子点があります。他の点、たとえば(1/2,1/2,1)の格子点はひとつとなりの立方体
に所属するものと考えます。あらかじめ格子点が4つあるというのはどういう事かと言うと、
うまく単位胞を選ぶと立方体の1/4の体積のものが作れて、その中の格子点数は1になります。
このような単位胞は基本単位胞といい、たとえばOA、OB、OCを三辺とする菱形六面体がそのひとつ
です。しかしそれでは形が分かりにくいのでふつうは体積4倍の立方体の単位胞を考える代わりに
格子点数が4になっているのです。

面心立方構造(fcc)は面心立方格子の格子点にだけ原子を置いたもので、単位胞内の
格子点数は4、原子数も4です。一方、ダイヤモンド構造は炭素原子を
O(0,0,0)、O'(1/4,1/4,1/4)
A(0,1/2,1/2)、A'(1/4,3/4,3/4)
B(1/2,0,1/2)、B'(3/4,1/4,3/4)
C(1/2,1/2,0)、C'(3/4,3/4,1/4)
の8カ所に置いた構造です。これは原点に付随する(0,0,0)(1/4,1/4,1/4)の2つの炭素原子を
単位構造として、A、B、Cの3格子点にもコピーしたものと考えることができます。fccを
(1/4,1/4,1/4)だけ平行移動して重ねたものと捉えても構いませんが、ダイヤモンド構造として
の単位胞はあくまでも(0,0,0)を原点とするものだけですから、格子点数4、原子数8となります。

以上長くなってしまいましたがわからなければまたおっしゃって下さい。

まず結晶格子とは、空間の三方向に等間隔で並んだ点の集まりのことです。
そしてどんな複雑な結晶構造でも、「結晶格子×単位構造」からできています。
このことを少しずつ説明してみたいと思います。

単純立方格子(primitive cubic; cP)は一番わかりやすいと思いますが、ジャングルジムのように
立方体をたくさん詰め込んだような形をしています。ただし、格子とはあくまでも立方体の頂点の
部分だけの集合なので、フレームの部分は含みません。この頂点一つ一つのことを格子点と言います。
8個の格子点を...続きを読む


人気Q&Aランキング