今だけ人気マンガ100円レンタル特集♪

加速度 a=dv/dt = (d^2 x) /(dt^2)
という公式があったのですが、(d^2 x) /(dt^2)はどうやって出せばよいのでしょうか?
dv/dt のvに
v=dx/dt
を代入すると
a=(d^2 x) /(d^2 t^2)
になってしまいます。
計算がまちがっているのでしょうか?

このQ&Aに関連する最新のQ&A

D」に関するQ&A: canon 70d オススメレンズ

^」に関するQ&A: 14・・・0343です(^o_o^)

dt 意味」に関するQ&A: d^2r/dt^2の意味

A 回答 (3件)

微分でわからなくなったら差にして考えてみてください。



速度vというのは、Δtを十分に小さい量として

v(t) = [ x(t+Δt)-x(t) ]/[ (t+Δt)-t ] = Δx(t)/Δt

ですね。同じようにして加速度a(t)は

a(t) = [ v(t+Δt)-v(t) ]/[ (t+Δt)-t ] = Δv(t)/Δt

ですが、v(t)に上の結果を使うと

a(t) = Δv(t)/Δt = Δ[Δx(t)/Δt]/Δt = Δ[Δx(t)]/(Δt)^2

です。

微分というのはΔt→0の極限を取ったときにΔをdと書くという
約束になっているというだけのことなので、

a=dv/dt = (d^2 x) /(dt^2)

は間違いで、本当は

a=dv/dt = (d^2 x) /(dt)^2

という意味です。

また、

a=(d^2 x) /(d^2 t^2)

も間違いです。こう書いてしまうと分母はΔ(Δt^2)という意味になってしまいます。
    • good
    • 1
この回答へのお礼

わかりました!
ありがとうございます。

お礼日時:2009/02/18 02:42

こんばんは。



>>>
加速度 a=dv/dt = (d^2 x) /(dt^2)
という公式があったのですが

違います。

ここだと、分数の形に書きにくいですが、
書くとすれば、
d^2 x/dt^2
( (d^2/dt^2)x とも書く)
です。
こちらの中の「単振動の方程式」も見てください。
http://ja.wikipedia.org/wiki/%E5%8D%98%E6%8C%AF% …

d^2 x/dt^2 は、xをtで2回微分するという意味です。
高校数学の教科書に載っています。


>>>
dv/dt のvに v=dx/dt を代入すると
a=(d^2 x) /(d^2 t^2) になってしまいます。

そうはなりません。
代入すれば、
dv/dt = d(dx/dt)/dt
 = d^2 x/dt^2
 = xをtで2回微分したもの

です。


以上、ご参考になりましたら幸いです。
    • good
    • 1
この回答へのお礼

d^2 x/dt^2 は、xをtで2回微分するという意味だったのですね
ありがとうございます!

お礼日時:2009/02/18 02:43

微分を何か文字の形式的な操作だと勘違いしていませんか?



dv/dt は「vをtで一回微分する」という意味です
同じく
dx/dt は「xをtで一回微分する」という意味です
ですのでa=dv/dtの中にv=を代入するということは
vをtで一回微分⇔(xをtで一回微分したもの)をtで一回微分する⇔xをtで2回微分する⇔(d^2/dt^2)x
となりますね。
    • good
    • 2

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q運動方程式の微分積分の計算

 運動方程式の微分積分の計算方法がわかりません。詳しく教えてもらえると嬉しいです。よろしく、お願いします。以下はテキストの抜粋です。

m・dv/dt = F(r)
両辺に速度 v=dr/dt をかけると
mv・dv/dt = F(r)・dr/dt
となる。ここで、
v・dv/dt = d/dt(1/2v^2)  ← この式変形が、分かりません。1/2も不明です。
と変形できるので、上の式は
d/dt [1/2 mv^2(t)] = F・dr(t)/dt

Aベストアンサー

積の微分の公式
(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
をつかっているだけです。

v^2=v・v
v'=dv/dt

です。

d/dt(v^2)=(v^2)'=(v・v)'=v'v+vv'=2vv'=2v・dv/dt

だから、

v・dv/dt=1/2・d/dt(v^2)=d/dt(1/2v^2)

でしよう。

Q微分のdx/dtというような表記の仕方がいまいち良くわかりません

記号の意味そのものは良くわかるのですが…
そのdx/dtに掛けたり割ったりする感覚が良くわかりません。
dy/dt×dt/dx=dy/dxのような?感じです
また、高次導関数をd^ny/dx^nと表記する仕組みも良くわかりません。
なぜ分数で言う分子の位置ではdに指数がついているのに分母の位置にではxに指数が付いているのか…まったくの謎です。
数学が苦手なので基礎的な部分から教えてください

Aベストアンサー

こんばんは。

dy/dx は、ある瞬間(xの微小変化)における、
xの変化量に対するyの変化量の割合です。

たとえば、y = x^2 という関数のグラフを例に取りますと、


xがaからa+2に変化するときの、xの変化に対するyの変化の割合
 = (y(a+2)-y(a))/(a+2 - a)
 = ((a+2)^2 - a^2)/(a+2 - a)
 = (4a + 4)/2
 = 2a + 2


xの変化の幅を1つ減らせば、

xがaからa+1に変化するときの、xの変化に対するyの変化の割合
 = (y(a+1)-y(a))/(a+1 - a)
 = ((a+1)^2 - a^2)/(a+1 - a)
 = 2a + 1


では、xの変化をさらに1つ減らした場合を考えます。
それは、xをaからaに変化させるということです。
aがいかなる値であっても、y=x^2のグラフには、たしかに傾きがありますが、
傾きというのは、変化の割合と同じです。
ですから、答えがあるはずです。
そこで、上記と同じく、x=a における変化の割合を求めるとすると、どうなるかと言えば、
(y(a)-y(a))/(a-a) = 0/0 (=不定)
という、わけのわからない結果となってしまいます。
しかし、グラフの傾きも、変化の割合も存在するはずです。

そこで、非常に小さい変化量を、dをつけた記号で表すことを考えます。

xの変化は、 a → a+dx
yの変化は、 y(a) → y(a+dx)

xの変化量は、dx ( = a+dx - a)
yの変化量は、dy = y(a+dx) - y(a)
です。


x=aにおける、xの変化に対するyの変化の割合
 =(y(a+dx)-y(a))/(a+dx - a)
 = ((a+dx)^2 - a^2)/(a+dx - a)
 = (2adx + (dx)^2 )/dx
とすることができます。

分子に(dx)^2 がありますが、
dx自体が非常に小さい量ですので、(dx)^2 は、全く無視してよい量となります。
よって、
x=aにおける、xの変化に対するyの変化の割合
 = (2adx + (dx)^2 )/dx
 = 2adx/dx
 = 2a
となります。

これで、x=a のときの dy/dx は、 2a と表せることがわかりました。

ということは、いかなるxの値についても、
dy/dx = 2x
であるということです。

以上のことで、
・x^2 を微分したら 2x になること
・dy/dx は、xの変化に対するyの変化の割合
の意味がおわかりになったと思います。


そして、
たとえば、y、t、x の3変数があって、
ある地点において、
tの変化量のxの変化量に対する割合が4で、
yの変化量のtの変化量に対する割合が3だとしましょう。
すると、xが1変化するのに対してyは12変化します。
dt/dx = 4
dy/dt = 3
dy/dx = 12 = 3 × 4 = dy/dt・dt/dx


なお、
高次導関数の表記については、単なる約束事だと思っておけばよいです。
素直に書けば、
1回微分は、dy/dx
2回微分は、d(dy/dx)/dx
3回微分は、d(d(dy/dx)/dx)/dx
ということになりますが、これでは見にくいので。


以上、ご参考になりましたら幸いです。

こんばんは。

dy/dx は、ある瞬間(xの微小変化)における、
xの変化量に対するyの変化量の割合です。

たとえば、y = x^2 という関数のグラフを例に取りますと、


xがaからa+2に変化するときの、xの変化に対するyの変化の割合
 = (y(a+2)-y(a))/(a+2 - a)
 = ((a+2)^2 - a^2)/(a+2 - a)
 = (4a + 4)/2
 = 2a + 2


xの変化の幅を1つ減らせば、

xがaからa+1に変化するときの、xの変...続きを読む

Q2階微分d^2y/dx^2を詳しく教えてください

微分=傾き=tanθ=dy/dxと言うのは入門書でなんとかわかったのですが
2階微分=傾きの変化率(傾きの傾き)=d^2y/dx^2
のこのd^2y/dx^2がなぜこうなるのかぜんぜんわかりません。
dy/dxがどう変化してd^2y/dx^2となるのか教えてください。
いろいろ本やネットで調べましたが傾き=tanθ=dy/dxまでは入門書でも
詳しく書かれているのですがd^2y/dx^2へはどの解説でもいきなり飛んでいってしまいます。

Aベストアンサー

表記の仕方ですか?
dy/dxは 
yをxで微分するということです
2階微分はdy/dxをさらにxで微分するということです
dy/dxのyのところをdy/dxにおきかえれば
d(dy/dx)/dx=d^2y/dx^2
見た目ではdが2回掛かっているからd^2
dxの部分も2回掛かっているのでdx^2なんですが
dを1つの変数とみたり、dxを1つの変数と見てたりして分かりにくいかもしれません
これはそう決めたからなんです
ある程度覚えるしかないです

Q微分記号“d”について

こんにちは^^
微分記号“d”について質問です!

例えば、置換積分などをする際に
3x-2=t ・・・(1)
とするとします。

両辺を微分すると
3dx=dt ・・・(2)
となるのはわかるのですが、この時についているdxはなんなのでしょうか?
3は微分してできたものですよという印ですか?
高校のときになるものはなるで覚えてしまっていたのでちょっと理屈がわからなくて・・・

(1)式と(2)式の間は
d(3x-2)=dt
が入っていると考えてよろしいのでしょうか?
またdy/dxなどと表記するときとの違いも教えてください!

Aベストアンサー

物理の方では、dは微小量をあらわすと思えばいいと思います。

3dx=dt

は、微小な変化 dx に対応する t の変化量が dt ということになりますね。

3x-2=t ・・・(1)

つまり、xが変化しても-2の部分は変わりませんから、tの変化量に影響ありません。
xの3倍(から2を引いたもの)がtなのですから、微小変化 dx に対して、tの変化量 dt はdx の3倍になります。だから、

3dx=dt ・・・(2)

それで、(1)式と(2)式の間に文章で書いた部分をまとめると、

d(3x-2)=dt

ということにはなると思います。
微分しているのか、といえば、そのとおりです。dxに対応するtの変化量が必要なのですから、微分しています。
ただ、微分というのは

dt/dx = 3

と書くのが本当です。dt/dxは、ひとまとまりなんですよね。
分数みたいに見えるから、

dt=3dx ⇒ ∫dt=∫3dx ⇒ t=3x+C

みたいに計算するのです。
数学的にはかなり怪しい操作だと聞いたことがありますが、物理屋さんはよくやりますね。

物理の方では、dは微小量をあらわすと思えばいいと思います。

3dx=dt

は、微小な変化 dx に対応する t の変化量が dt ということになりますね。

3x-2=t ・・・(1)

つまり、xが変化しても-2の部分は変わりませんから、tの変化量に影響ありません。
xの3倍(から2を引いたもの)がtなのですから、微小変化 dx に対して、tの変化量 dt はdx の3倍になります。だから、

3dx=dt ・・・(2)

それで、(1)式と(2)式の間に文章で書いた部分をまとめると、

d(3x-2)=dt

ということには...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q加速度を積分すると速度・・・

加速度aを時間tで積分すると速度が出てきて、その速度vを時間tで積分すると位置が出てきますよね。
そのときの初期条件の設定の仕方はがわかりません。
詳しく教えてください。

Aベストアンサー

加速度aを時間tで積分すると積分定数が出てきますよね。それが初速度となります。
次に速度vを時間tで積分すると、また積分定数が出てきます。それが基準点である位置となります。

例えば、ある物体が時刻t=0(s)のときの加速度a=6(m/s^2)、初速度v=10(m/s)、位置x=1(m)の状態のとき時刻tにおける速度、位置を求めよ、という問題があったとします。

vはaを時間tで積分してv=6t+C(Cは積分定数です)となります。
このときのCが初速度10となります。
なので時刻tにおける物体の速度vはv=6t+10(m/s)となります。

次にさきほど求めたvを時間tで積分して、時刻tにおける物体の位置を求めます。
v=6t+10を時間tで積分するとx=3t^2+10t+C’(C’は積分定数です)となります。
このときのC’が物体がはじめにあった位置1となります。
なので時刻tにおける物体の位置xはx=3t^2+10t+1(m)となります。

Qd^2r/dt^2の意味

d^2r/dt^2の意味が知りたいです
どうやらこれが加速度を表してるみたいなのですが、ちょっと知ってるくらいの私の微分の知識ではよく分かりません
説明して頂きたいです よろしくお願いします

Aベストアンサー

これはrをtで2回微分する、という意味です。定義ですので覚えるしかありません。
r(位置ベクトルでしょう)を時間tで微分するとその瞬間の速度v=dr/dtが得られます。
速度vを時間tで微分すると加速度a=dv/dtが得られます。(v,aはベクトル)
a=dv/dt=(d/dt)(dr/dt)=d^2r/dt^2
です。

Qタンジェントとアークタンジェントの違い

タンジェントとアークタンジェント、サインとアークサイン、コサインとアークコサインの違いをすごく簡単に教えてください。

Aベストアンサー

タンジェントやサイン、コサインは、角度に対する関数です。
例えば
 tan60°=√3
のような感じで、角度を入力すると、値が出てきます。

逆に、アークタンジェントなどは、数値に対する関数です。
 arctan√3=60°
などのように、数値を入力すると角度が出てきます。

そして、タンジェントとアークタンジェントの関係は、
springsideさんも書いてありますが、逆関数という関係です。
逆関数というのは、原因と結果が逆になるような関数です。
例えば、
  45°→タンジェント→1
  1  →アークタンジェント→45°
のように、「1」と「45°」が逆の位置にありますよね?
こういう関係を、「逆関数」というんです。

どうでしょう、わかりましたか?

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む


人気Q&Aランキング