
非常に初歩的な質問ですみません。
今の私の解釈では・・・
【仮定】
・問題文に出てきた事象。
・結論にはなり得ない。
【定義】
・証明をしなくてもわかりきっている(知識として丸覚えしなければならない)特徴。
・問題を解く際、答えでここへたどり着く証明をすれば、その図形であることがいえる(例:~により、AB=CB(2辺の長さが等しい)なので三角形ABCは二等辺三角形である)。つまり、結論になり得る。
【定理】
・以前証明してはっきりした特徴。
・結論になり得る?
習った内容をすっかり忘れてしまい、結論になり得るのはてっきり「定義」のみかと思って問題集の証明を解いていたのですが、どうやら模範解答を読むと定理も結論にしていいようで…
つまりは・・・
・定義と定理の違いはさほどなく、両方とも図形の特徴(性質)である。
・よって、定義のみならず定理も丸覚えせねばならない。
ということになるのでしょうか?
図形の性質については小学校でも触れているので、定義と定理にさほど違いが無ければ、とりあえず特徴を片っ端から思い出して証明を解けばいい話なのでちょっと気が楽になっていいなあと思っているのですが・・・如何でしょうか?

No.1ベストアンサー
- 回答日時:
「定義」は決められた事です。
例えば直角三角形の定義は「内角の1つが直角である三角形」。
決まったことなので、理由も何もありません。
それに対し、「定理」は証明により導き出された法則です。
例えば「ピタゴラスの定理」。
これは「~なので、ピタゴラスの定理により、三角形ABCは直角三角形である」
という風に証明に使うことができます。
「定理」はもちろん丸暗記していると便利ですが、証明により導き出すことができるので、必ず丸暗記しなければならないということはありません。
回答ありがとうございます。
「定理」は証明により導き出すことが"出来る"との事ですが・・・
・周知の事実と解釈してよい。
・よって、使用するごとに幾度も幾度も定理を導き出すまでの証明を書く必要はない。
…ということでいいんでしょうか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
ブロッホの定理
-
lim[x→+∞](x^n/e^x)=0 の証明
-
大学の記述入試で外積は使えま...
-
物理学に強い方に質問です。 電...
-
AとBはn次正方行列とする。 積A...
-
至上最難問の数学がとけた
-
【遊びのピタゴラスイッチはな...
-
奇数次の代数方程式
-
【線形代数】基底、dimVの求め方
-
ファルコンの定理は解かれまし...
-
パップスギュルダンの定理について
-
ほうべき(方巾)の定理について
-
直角三角形じゃないのに三平方...
-
複素解析の分野における“原理”...
-
至急です! 数学で証明について...
-
ピタゴラス数について。
-
11の22乗を13で割った余り...
-
定理と法則の違い
-
13^(5^14)を19で割った余り
-
数A nは自然数とする。n , n+2 ...
おすすめ情報