結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

分子の化学結合理論で、分子軌道法という理論の中で使われます。


文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

この回答への補足

図も含めた丁寧な回答ありがとうございます。
水素の場合については理解できたと思います。

ご回答を読み、さらに質問で申し訳ないのですが、
電子が3つ以上になれば反結合性軌道にも順次、電子が入っていくという理解で合っていますでしょうか?

結合性と反結合性の割合の違いで結合の強さが変わるという理解は正しいでしょうか?

また、反結合性軌道の方に電子が多く入ることはあるのでしょうか?
反結合性軌道とは結合を破壊する性質を持つとありますので、反結合性軌道に多く入ることはないと考えたのですがいかがでしょうか?

多くの質問すみません。回答よろしくお願いいたします。

補足日時:2009/04/29 18:06
    • good
    • 14

おっしゃる通りです。


ただし「3つ以上になると反結合性軌道に~」というのは水素分子系の分子の場合ですね。
もっと複雑な分子、O2やF2になると様子も全然変わってきますし、SO2のような分子になると、ある軌道が結合性か反結合性か、非結合性(結合生成にも結合破壊にも関わらない軌道)かという判定も難しくなってきます。

一般に反結合性軌道に電子が入っていくと、結合次数が下がるので結合解離エネルギーが小さくなり、分子は不安定になります。
実際、水素分子に電子が1つ付加した陰イオン(H2^-、水素分子陰イオン)は反結合性軌道に電子が1つ入るため、(2 - 1) / 2 = 0.5 で結合次数は0.5となります。
測定値も水素分子より結合解離エネルギーが小さくなっているので一致しますね。
逆に、水素分子から電子を1つ取り除いた陽イオン(H2^+、水素分子イオン)も結合性軌道から電子が1つ減るので、(1 - 0) / 2 = 0.5 で結合次数は0.5になり、水素分子よりも不安定です。
この結果からみて、結合性軌道と反結合性軌道の電子の割合によって結合強度が変わるという考え方は正しいでしょう。

反結合性軌道のほうに電子が多く入ることはありません。
また、通常結合性軌道と同じ数だけ反結合性軌道に電子が入ることもありません。
He2分子を考えてみるとよくわかると思います。
電子が4つあるので、上で挙げた水素分子の図の結合性軌道・反結合性軌道すべてに電子が入ります。
よって結合次数は (2 - 2) / 2 = 0 となります。
せっかく結合性軌道によって安定化したのに、反結合性軌道によってそれが帳消しにされてしまいました。
これではエネルギーを消費して結合する意味がありません。
なのでHe2分子は存在しないのです。

ただし特殊な条件下ではこのような分子が存在する場合があります。
Ne2分子などのHeよりも周期の大きい希ガスからなる二原子分子です。
しかし、液体になるような極低温下・一切熱の発生しない状況でしか存在できません。
Ne2分子の結合解離エネルギーは0.0036eVで、非常に反応性の高いフッ素分子のそれ(1.602eV)と比べても桁外れに小さいです。
この0.0036eVというエネルギーは気体の分子が持つ運動エネルギーの10分の1ほどのエネルギーで、そのためほんの少しでも熱を与えると分解してしまいます。
    • good
    • 3
この回答へのお礼

補足への回答ありがとうございます。
理解できました。
2回とも分かりやすい説明でしたので、すんなりと頭の中に入ってきました。
初め、自分で調べた時はややこしそうな内容で勉強するのを敬遠していましたが、coirnさんの説明で理解でき、さらに考えることができました。(まだまだ低レベルですが…)
今回は丁寧に教えていただきありがとうございました。
物理や化学(分子系)について勉強中なので、もしもまた質問していたら教えていただけると幸いです。
ありがとうございました。

お礼日時:2009/05/02 00:16

どうもうまく画像がアップできないのでこちら。


ttp://imagepot.net/view/124099490520.jpg
    • good
    • 7

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qσ結合、π結合、sp3混成???

こんにちわ。今、有機化学の勉強をしているのですが、よくわからないことがでてきてしまったので質問させていただきます。なお、この分野には疎いものなので、初歩的なことかもしれませんがよろしくおねがいします。

題名の通りで、σ結合、π結合、混成軌道とはどういう意味なのですか??手元にある資料を読んだのですが、全くわからなかったので、どなたかお教えいただければ幸いです

Aベストアンサー

σはsに対応しています。sとsの結合でなくともsとp他の結合でも良いのですが、対称性で、「結合に関与する(原子)軌道が(分子軌道でも良い)結合軸に関して回転対称である」つまり結合軸の周りにどの様な角度回しても変化のない結合です。
πはpから来たもので、結合が「結合に関与する軌道(同上)が結合を含む面内に『一つ』の節を持ち結合軸上に電子密度のないもの」を指します。当然sは使えませんpかdかから作ります。
混成軌道:例えばs1p3の軌道があったときこれらからsp+2×p、sp2+p、sp3のいずれの組み合わせを(数学的に)作っても、どれもが四つの「直交した」軌道になります。
この様に「典型的な」表現から他の数学的に等価な(直交した)はじめの軌道数と同数の軌道を作り出したものです。
もっぱら化学結合の立体特異性を説明するのに使われます。
ライナス・ポーリング先生達が考え出したもののようです。

Q電子軌道のエネルギー準位

電子軌道のエネルギー準位は内に行くほど低くなる、と書いてあるのですがエネルギー準位とは何ですか?

また、電子がエネルギー準位の低いところから埋まっていく理由も教えてください。

Aベストアンサー

例えば次のURLを参考にされてはいかがでしょう。

http://hyper-chemistry.blog.so-net.ne.jp/2011-03-02

Q原子価結合法と分子軌道法

原子価結合法と分子軌道法の違いが
いまいち分かりません。
数式ばかり並べられているのを見ても
どこがどう違うのかを言葉でうまく表現出来ません。
本なども読んでみたのですが、どれも難しすぎて、明確にどこがどう違うのかが分かりません。
どなたか分かりやすく、これらの違いを説明してくださいませんか?

Aベストアンサー

レスが付かないようなので、一言。
このサイトのココ↓
http://okwave.jp/kotaeru.php3?q=561839
に大変詳しく、分かりやすい解説が載っていますよ。一度ご参照してみてください。

参考URL:http://okwave.jp/kotaeru.php3?q=561839

Q双極子モーメントの求め方について

薬学1回生です。有機化学の教科書で、双極子モーメントというものがあるのですが、求め方がよくわかりません。教科書にはμ=q×r(q:電荷、r:両電荷間の距離)と書いてあります。
いったいどこを見て電荷や両電荷間の距離がわかるのですか?表などがあるのでしょうか?
お分かりの方がいらっしゃいましたら、詳しく教えていただけるととてもありがたいです。

Aベストアンサー

>いったいどこを見て電荷や両電荷間の距離がわかるのですか?表などがあるのでしょうか?

薬学1回生ということなので、これからいろいろ知識を獲得していかれることと思います。さて、直接的な答えにはなりませんが、参考URLの「電気陰性度と極性」のところは一読の価値があると思います。また、次のサイトも覗いてみてください。簡単な分子の双極子モーメントが与えられていたり、分子の形と双極子モーメントの関係などが載っています。
 http://www.keirinkan.com/
   ↓
  化学(2)
   ↓
 共有結合によって結びついた物質
以上、ご参考まで。

参考URL:http://www.shse.u-hyogo.ac.jp/kumagai/eac/chem/lec6-2.html

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q共鳴構造式の書き方って?

有機化学を大学で習っているのですが、いきなり最初の方で躓いてしまいました><
教科書に「巻矢印表記法を用いて、化合物の構造に寄与する共鳴構造式を書け」という問題があるのですがさっぱりわかりません。参考書等を調べてみてもさっぱりわからないので…どうか教えてください><

Aベストアンサー

巻矢印が電子対の移動を表しているということはわかりますか?
また、分子や原子の電子配置はわかりますか?つまり、Lewis構造式を正しくかけますか?

これらがわかっていなければ、共鳴構造式は書けません。逆にこれらがわかっているのであれば、教科書等の例を、その電子配置を考えながら、丁寧に見ていけば理解出来るはずです。

なお、原子の電荷を考える場合には、共有されている電子は共有している原子で等分し、孤立電子対は、それを有する原子のみに属すると考えて、その電子数を、その原子本来の電子数と比較することによって決定します。
上述の電子数が、その原子の本来の電子数よりも多ければ負電荷をもつことになり、少なければ正電荷をもつことになります。

また、共鳴構造式を考えるときには、炭素以外の原子から考え、炭素以外の原子において、ほとんどの場合、本来の結合数(酸素なら2、窒素なら3、ハロゲンならI)よりも、1本多い結合を作っていれば+、1本少ない結合を作っていればーの電荷をもつことになります。これは、上述の電子配置のことがわかっていれば明らかですけどね。

まあ、細かなノウハウはありますが、それは経験的に身につけることですね。

巻矢印が電子対の移動を表しているということはわかりますか?
また、分子や原子の電子配置はわかりますか?つまり、Lewis構造式を正しくかけますか?

これらがわかっていなければ、共鳴構造式は書けません。逆にこれらがわかっているのであれば、教科書等の例を、その電子配置を考えながら、丁寧に見ていけば理解出来るはずです。

なお、原子の電荷を考える場合には、共有されている電子は共有している原子で等分し、孤立電子対は、それを有する原子のみに属すると考えて、その電子数を、その原子本来の電...続きを読む

Qエネルギー準位図のかきかた

今大学一年です。
分子軌道法を用いて説明するときの、エネルギー準位図をかくとき、π結合の軌道を一重線のときや二重線のときがありますが、これはどう違うのでしょうか?

初歩的な質問なので教授にも聞けず…どなたかよろしくお願いします。

Aベストアンサー

>π結合の軌道を一重線のときや二重線のとき
これはベンゼンのときなど「対称性が高い」場合に現れます。
ベンゼンのp軌道からつくられるπ軌道のHOMO、π*のLUMOは同じエネルギーの軌道が二つずつあります。
化学では「縮重」、物理では「縮退」と呼びます。
対称性が高い分子の場合に見られます。
電子のエネルギーレベルだけでなく振動エネルギーの軌道などでも見られます。
原子の軌道でも、px、py、pzなどは縮重しています。
分子の場合ベンゼン以外で良く知られているのは三重項酸素の反結合軌道(LUMO)二つの縮重です。

Q標準自由エネルギー変化について教えてください。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-AとするとAが大きいほど反応は進みやすのでしょうか?(これ本当に分かりません・・)

自由エネルギー変化ΔGについてです
ΔG=ΔG゜+RTlnK
aA+bB⇔cC+dDと言う反応ではモル分圧平衡定数とするとK=([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)
です。
質問4:そもそもΔGとは何を表現しているのですか?平衡だとΔG=0となる。これはどういうこと?
質問5:ΔG゜=-RTlnKですが、通常ΔGというとみんなこの方法で算出してしまいます。ここで標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGをごっちゃにするとエライ事になりそうですが・・・
質問6:ΔG=ΔG゜+RTln([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)でよく25℃、1atmの濃度や分圧を入れてΔGを出してますが、これはどう解釈したらよいのでしょうか?その濃度や分圧のときの自由エネルギーということ?でもそれなら25℃、1atmの生成ΔGfから算出したΔG゜とΔGが同じにならないとおかしくありませんか?
質問:そもそも上記の考え方にどこかおかしいから悩んでいるので、指摘していただけたら幸いです。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-Aとすると...続きを読む

Aベストアンサー

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べるのは大変なので
変化量を指標に用いていることは同じですが、標準生成自由エネルギーは、すべての元素が標準状態にあるとき自由エネルギーを0として、それらの単体から生成される化合物を上記の式を使って計算した物です。

反応が自発的に進むためにはΔGがマイナスでなければなりません。
ΔGは自由エネルギー変化です。
標準生成自由エネルギーΔG゜とは違います。
-RTlnK=ΔG゜ という関係から ΔG゜が負の時はKが1よりも大きい事を意味し、正の時には、その反応が進まないということではなくKが1よりも小さいことだけを意味します。
ΔG゜が大きな正の値をとるとKは著しく小さくなり、平衡点は原系の方に極端に片寄ることを意味しています。
ΔG゜=0ならばK=1ということです。

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べる...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q水素結合とはどういうものですか?

現在、化学を勉強している者です。水素結合についての説明が理解できません。わかりやすく教えていただけないでしょうか?また、水素結合に特徴があったらそれもよろしくお願いします。

Aベストアンサー

要は、「電気陰性度の大きい原子に結合した水素と、電気陰性度の大きい原子の間の静電的な引力」です。
電気陰性度の大きい原子というのは、事実上、F,O,Nと考えて良いでしょう。
電気陰性度の大きい原子と結合した水素上には正電荷(δ+)が生じます。また、電気陰性度の大きい原子上には負電荷(δー)が存在します。

水素が他の原子と違うのは、その価電子が1個しかないことです。つまり、他のイオンとは異なり、H+というのは原子核(通常は陽子)のみになります。他のイオンの場合には、内側にも電子格殻が存在しますので、原子格がむき出しになることはありません。
ご存じと思いますが、原子核というのは原子のサイズに比べてはるかに小さいために、H+というのは他のイオンとは比べ物にならないほど小さいといえます。もちろん、正電荷を持つ水素というのは水素イオンとは異なりますので、原子殻がむき出しになっているわけではありませんが、電子が電気陰性度の大きい原子に引き寄せられているために、むき出しに近い状態になり、非常に小さい空間に正電荷が密集することになります。
そこに、他の電気陰性度の大きい原子のδーが接近すれば、静電的な引力が生じるということです。
そのときの、水素は通常の水素原子に比べても小さいために、水素結合の結合角は180度に近くなります。つまり、2個の球(電気陰性度の大きい原子)が非常に小さな球(水素原子)を介してつながれば、直線状にならざるを得ないということです。

要は、「電気陰性度の大きい原子に結合した水素と、電気陰性度の大きい原子の間の静電的な引力」です。
電気陰性度の大きい原子というのは、事実上、F,O,Nと考えて良いでしょう。
電気陰性度の大きい原子と結合した水素上には正電荷(δ+)が生じます。また、電気陰性度の大きい原子上には負電荷(δー)が存在します。

水素が他の原子と違うのは、その価電子が1個しかないことです。つまり、他のイオンとは異なり、H+というのは原子核(通常は陽子)のみになります。他のイオンの場合には、内側にも電子格殻...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報