ネットが遅くてイライラしてない!?

統計学の勉強をしていたのですが、ふと、よくわからない式に遭遇してしまいました。
添付した画像ファイルもご覧になっていただきたいのですが、とある教科書に記載されていた偏差積和の式

Sxy=Σx(i)y(i)-(Σx(i))(Σy(i))/n・・・(1)

が、どうしても理解できません(>_<)
ここ↓
http://web.mac.com/ricebrd/%E3%82%B5%E3%82%A4%E3 …
等で、偏差積和に関する大まかな意味は把握し、上記リンク先に記載されている式を展開すれば、(1)式になるのだと思い、展開してみたり試行錯誤してみました。
しかし、どうしてもうまく(1)を導くことができません。また、
偏差平方和↓
http://oshiete1.goo.ne.jp/qa4150278.html
の証明は見つかったのですが、偏差積和の証明は、見つけることができませんでした(ToT)

数学や統計学に自信のある方、お力をお借しいただければ幸いです。
よろしくお願いします<m(__)m>

「偏差積和の証明」の質問画像

このQ&Aに関連する最新のQ&A

A 回答 (2件)

X = (1/n)Σx(i)


Y = (1/n)Σy(i)

と定義すると、XとYはそれぞれxとyの平均値なので、

Sxy = Σ((x(i)-X)(y(i)-Y))

が偏差積和。これを展開するだけ。やることは偏差平方和の話とまるっきり同じなので、迷うところはどこにもないと思うけど、強いて言えば

Σ(XY) = XYΣ1 = XYn

に注意するってことかな。
    • good
    • 0
この回答へのお礼

遅くなってすいません。
数日考えてみたのですが、数学は苦手でして、「展開するだけ」ということがなかなかできませんでした・・・でも、何とかできました!

Sxy =Σ(x(i)-X)(y(i)-Y)
=(x(1)-X)(y(1)-Y)
+(x(2)-X)(y(2)-Y)
+(x(3)-X)(y(3)-Y)
・・・
+(x(n)-X)(y(n)-Y)

=x(1)y(1)-x(1)Y-y(1)X+XY
+x(2)y(2)-x(2)Y-y(2)X+XY
+x(3)y(3)-x(3)Y-y(3)X+XY
・・・
+x(n)y(n)-x(n)Y-y(n)X+XY

=Σx(i)y(i)-Σx(i)Y-Σy(i)X+nXY

X = (1/n)Σx(i)
Y = (1/n)Σy(i)

を代入すると、

=Σx(i)y(i)-Σx(i)Σy(i)(1/n)-Σy(i)Σx(i)(1/n)
+n(Σx(i)Σy(i)(1/n)(1/n))

=Σx(i)y(i)-2Σx(i)Σy(i)(1/n)+(Σx(i)Σy(i)(1/n))
=Σx(i)y(i)+(Σx(i)Σy(i)(1/n))

アドバイス助かりました。
ありがとうございます<m(__)m>

お礼日時:2009/05/15 21:39

偏差平方和のQ&A ANo.3にもあるように、xの平均とyの平均を定数と考えていいのですよ。

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q偏差平方和の式

初歩的な質問で恐縮です。相関分析の参考書に
Sx=Σ(xi-xbar)^2=Σxi^2-(Σxi)^2/n
とあります。
この式の証明方法を教えていただけないでしょうか?
この分野はあまり得意でなく困っております。
言葉を添え丁寧に教えていただくと助かります。
勝手申しますが、よろしくお願いします。

Aベストアンサー

個人的な書きやすさのため
xbarをaverage(x)って書き

xiをx(i)と書くことにする。

なお
Σ(x(i))^2は (x(1) + x(2) + x(3))^2を
Σ(x(i)^2)は (x(1)^2 + x(2)^2 + x(3)^2)を
それぞれ意味するものとする。
 平均って,定義から明らかに
average(x) = Σ(x(i))/n ・・・A
だよな。

Σ(x(i) - average(x))^2
=(x(1) - average(x))^2
+(x(2) - average(x))^2
+(x(3) - average(x))^2
+…
+(x(n) - average(x))^2

=(x(1))^2 - 2 * x(1) * average(x) + (average(x))^2
+(x(2))^2 - 2 * x(2) * average(x) + (average(x))^2
+(x(3))^2 - 2 * x(3) * average(x) + (average(x))^2
+…
+(x(n))^2 - 2 * x(n) * average(x) + (average(x))^2

= Σ(x(i)^2) - 2 * average(x) * Σ(x(i)) + n * (average(x))^2

ここでAをaverage(x)に代入すると

Σ(x(i)^2) - 2 * average(x) * Σ(x(i)) + n * (average(x))^2
= Σ(x(i)^2) - 2 * Σ(x(i)) / n * Σ(x(i)) + n * (Σ(x(i)) /n )^2
= Σ(x(i)^2) - 2 * Σ(x(i)) ^ 2 /n + Σ(x(i))^2 / n
= Σ(x(i)^2) - Σ(x(i))^2 / n

個人的な書きやすさのため
xbarをaverage(x)って書き

xiをx(i)と書くことにする。

なお
Σ(x(i))^2は (x(1) + x(2) + x(3))^2を
Σ(x(i)^2)は (x(1)^2 + x(2)^2 + x(3)^2)を
それぞれ意味するものとする。
 平均って,定義から明らかに
average(x) = Σ(x(i))/n ・・・A
だよな。

Σ(x(i) - average(x))^2
=(x(1) - average(x))^2
+(x(2) - average(x))^2
+(x(3) - average(x))^2
+…
+(x(n) - average(x))^2

=(x(1))^2 - 2 * x(1) * average(x) + (average(x))^2
+(x(2))^2 - 2 * x(2) * ave...続きを読む

Q偏差平方和の計算方法

QC検定に向けて勉強しているところです。

偏差平方和の計算は、
Sx=Σ(xi-xbar)^2=Σxi^2-(Σxi)^2/n
とあります。

Σ(xi-xbar)^2を展開していくときに、最終的に
式が、Σxi^2-n(xbar)^2で終わっていない理由、
つまり、xbarを消している理由って何かあるのですか?

Aベストアンサー

>Sx=Σ(xi-xbar)^2=Σxi^2-(Σxi)^2/n

定義からいうと

Sx=Σ(xi-xbar)^2     (1)

で完ということです。しかし計算手順を考えてみると

xbar=Σxi/n         (2)

ですからxbarはこのデータを足してnで割って得られるわけであって、これを(1)に用いてもう一度n個のデータを計算し直さなければならないという2度手間になっています。

Sx=Σxi^2-(Σxi)^2/n

はxiの和、およびΣxi^2の和を同時に求めつつ進めて、最後にこの式で処理すればよいので一度で済むということです。

表計算をする場合はA欄にxi、B欄にxi^2を入れておいて両者のn個の合計を取ってやればよいことになります。

いずれにしろPCを使う場合大した問題ではありません。

Q平方和、平方差とは?

こんな簡単な質問ですが、
よく、「平方和、平方差」と聞きますが、どういう計算式なんでしょうか?
数学が全くだめなのでわかりやすく教えていただけないでしょうか?

Aベストアンサー

> 平方差についてですが、出てくる数値の順番によって答が違ってきますね。そのあたりは何か決め事があるのでしょうか?

「aとbの差」を a-b の意味で使う場合と |a-b| の意味で使う場合とあり,きちんと断ってないときは文脈で判断するしかないと思います。

「三角形が鋭角三角形になる条件は,1辺の平方が他の2辺の平方和より小さく平方差より大きい」という記述では
|a^2-b^2|<c^2<a^2+b^2
を意味しています。

Q寄与率の計算式

分散分析を勉強中のものです。
分散分析において各要因の寄与率は次の式で与えられるようです。(数冊の書籍で確認しているので一般的な式と認識しています。)

寄与率=(Si-fi・Ve)/St ×100
 Siは要因iの平方和、fiは要因iの自由度、Veは誤差の分散、Stは全体の平方和

私が引っかかっているのは、なぜSi/St×100であらわさず、-fi・Veが余計についているのでしょうか?
どなたか教えていただけないでしょうか
よろしくお願いします。

Aベストアンサー

私の回答があなたの疑問に正しく向き合っていなかったような気がするので、補足します。
分散分析によってすべてがクリアになったように思えるのですが、実は、全く誤差のないモデルと、現実の誤差のあるモデルで実験をすると、誤差のあるモデルのほうが、抽出したはずの「割り付けた要因の分散」まで大きくなります。これは、誤差というものが、必ず左右平等に現れるものでない、という性質からくるものです。しかし、分散分析は「誤差が左右平等に現れる」という前提で行いますから、不平等分は「要因の分散」に上乗せされます。ですから、要因の効果の「推定」をするときには、その分を推定して引き算しなければなりません。私たちは、当たり前のように f・Ve を引き算していますが、この量は、定性的には、誤差によって不当に(?)大きくなってしまった要因の効果を補正しているものだ、と考えることができます。

Q電卓での二乗のやり方

一般的な安い電卓で二乗の計算は出来るのでしょうか

例えば  5の12乗 の計算は!!

出来るのであれば、教えてください。

Aベストアンサー

No.3ですが、No.4と動きが違うものがあります。ご参考まで。

SHARP
「5」「×」「×」「=」 →25(2乗)
「5」「×」「=」    →25(2乗)
「5」「+」「+」「=」 →5
「5」「+」「=」「=」 →5

Canon
「5」「×」「×」「=」 →25(2乗)
「5」「×」「=」    →25(2乗)
「5」「+」「+」「=」 →10
「5」「+」「=」「=」 →10

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

QWordで、1ページを丸ごと削除するには?

1ページしか必要ないのに、真っ白な2ページ目がその下に表示されてしまった場合、この余分な2ページ目を一括削除(消去)する為に、何かいい方法があるでしょうか?

Aベストアンサー

<表示されてしまった場合>
これはそれなりに理由があるわけで、改ページや改行によって、次のページにまで入力が及んでいる時にそうなります。
特に罫線で表を作成し、ページの下一杯まで罫線を引いたときなどには、よくなる現象です。

さて、メニューの「表示」で段落記号にチェックが入っていないと、改行や改ページなどの入力情報が見えず、白紙のページを全て選択→削除してもそのままということが良くあります。
1 改行マークが白紙のページの先頭に入っていれば、それをBackSpaceで消してやる。
2 罫線を使っている場合は、それでも効果がない場合がありますが、その時は行数を増やしてやる。
などの方法があります。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング