屋内設置の圧縮機で空気を圧縮する場合なのですが
圧縮機の 入口:温度=42℃、圧力=1BAR(大気圧)
     出口:温度=107℃、圧力=12BAR
の場合において、
     出口の温度を10℃下げたいのですが、この場合の
     圧力をどのくらいにすれば目標値に出来るのでしょうか。
放熱等の問題もありますがザックリとした計算でいいので教えて頂けないでしょうか。宜しくお願い致します。

A 回答 (2件)

圧力比12で断熱圧縮とすると300℃を超えますから、


冷却されているようです。

ポリトロープ変化と仮定すると変化は、
T2/T1=(P2/P1)^((n-1)/n)
で表されます。
ここでTは温度K、Pは圧力、2が出口、1が入口、
nがポリトロープ指数です。

(107+273.15)/(42+273,15)=12^((n-1)/n)
1.206=12^((n-1)/n)
((n-1)/n)=log12(1.206)=0.0754
となり圧力比の0.0754乗となります。

10℃下げたいので圧力比をπと表すと。
(97+273.15)/(42+273,15)=π^0.0754
1.175=π^0.0754
π=1.175^(1/0.0754)=8.43

とりあえず8.4BARから始めてみたらよさそうです。
    • good
    • 0
この回答へのお礼

どうもありがとうございました。
8~9の設定から試みてみます。
ご親切に感謝いたします。

お礼日時:2009/05/28 22:52

以下のページに圧縮と温度の関係のグラフがあります。


http://www.mikuni-group.co.jp/compressor/compres …
    • good
    • 0
この回答へのお礼

どうも有難うございます。
グラフで試してみます。

お礼日時:2009/05/28 22:53

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q3相電動機の消費電力の求め方

3相電動機の消費電力の求め方について質問です。

定格電圧 200V
定格電流  15A
出力   3.7KW

上記の電動機ですが実際の電流計指示値は10Aです。
この場合の消費電力の求め方は
√3*200*15=5.1KW
3.7/5.1*=0.72
√3*200*10*0.72=2.4KW
消費電力 2.4KW

このような計算で大丈夫でしょうか?
宜しくお願いします。

Aベストアンサー

出力は軸動力を表しているので、消費電力はそれを効率で割る必要があるかと思います。
概算で出してみると、定格での効率が85%程度と仮定すると、定格時の消費電力は3.7/0.85=4.4kW程度になります。
この時の一次皮相電力は、5.1kVAで、無効電力Qnは√(5.1^2-4.4^2)=2.6kVar程度になります。

この無効電力は励磁電流が支配的でしょうから、負荷によらず変わらないとすると、軽負荷時に線電流が10Aになったときの皮相電力は√3*200*10 で3.5kVAで、このときの有効電力は√(3.5^2-2.6^2)=2.3 kW という具合になりそうに思います。

Qモーターの定格電流の出し方

三相200v5.5kw定格電流22Aのモーターなんですが全負荷運転で22Aの電流が流れるって事で良いのでしょうか?
ちなみに定格電流が分からないモーターの電流値の出し方は5500/200×√3なのでしょうか?
そうすると定格電流が違ってくるので・・・
勝手な考えなんですが力率を70%って考えればよいのでしょうか?
調べていくうちにだんだん分からなくなってきちゃいました
もし宜しければ教えていただきたいのですが

Aベストアンサー

・全負荷運転で22Aの電流が流れる
で、OKです。

・定格電流が分からないモーターの電流値
5.5kWは軸出力なので、電気入力(有効電力)に換算するために、効率で割る必要があります。
次に、皮相電力に換算するために力率で割る必要があります。
結果、
{出力/(力率*効率)}/(√3*電圧)
ということになります。

モータの力率や効率が不明の場合には、
JISC4203 一般用単相誘導電動機
JISC4210 一般用低圧三相かご形誘導電動機
JISC4212 高効率低圧三相かご形誘導電動機
で規定されている効率や力率を使うことになるかと。
(これらの規格には、各容量について電流が参考値として記載されていますが)

Q回転数と流量、揚程、動力の関係について

こんにちは。
ポンプで回転数nと流量Q、回転数nと揚程H、回転数nと軸動力Lの関係について回転数n1、n2としたときQ1/Q2=n1/n2、H1/H2=(n1/n2)^2、L1/L2=(n1/n2)^3とそれぞれ1乗、2乗、3乗の関係がある
解説を見るのですがこの根拠を教えて下さい。

Aベストアンサー

 
根拠は「運動とエネルギーの関係」です。
ポンプを理想化した原理的な表現です。


1.流量。
直径Dの車輪がn回転/秒で回ってる場合の外周の速度は
  V = πD・n  です。
外周に羽根を付けて水を掻くと、水も同じ速度Vで動きますから、

(1) 流量Qは 『 回転数に比例 』 します。
(2) Q = k・n  比例式で表した。kは比例係数。
(3) Q1/Q2 = n1/n2 係数を使わない形の比例式。

 (3)は、(2)の適当な2カ所、Q1=k・n1、Q2=k・n2 を分数にしただけのものです。分数にするとkが消えますよね。kは水車の寸法とか水の抵抗などが絡む現実的なものだから、抽象的な話をするときには出て欲しくない、そこで(3)のように「出てこない形」にするのです。
さらに、分数にすればメートルとかkgとかの次元も約分されて消えてしまうので「ただの数」になります。10rpmと20rpm、1000rpmと2000rpm、分数ならどちらも「2倍」となり、理論的、抽象的に説明をやりやすいのです。



2.揚程
物理の「運動エネルギと位置エネルギの関係」そのものです。物理の教科書にある式、
  1/2・mV^2 = mgH  Hは高さ
これを上記の(3)をマネして、V1のときH1、V2のときH2、の記号を使って分数にすると、gもmも1/2もみんな消えて、
  (V1/V2)^2 = H1/H2
となりますね、見やすいでしょう?
Hは揚程そのものだし、回転数と流速Vは上記1から分かるように比例です(この比例計数も分数で消えてしまうことが理解できますか?)。
  (n1/n2)^2 = H1/H2
となります。



3.動力
動力(ワットとか馬力)は、単位時間のエネルギ量(ジュール)、すなわち ジュール/秒 です。
単位時間に運ばれる流体の質量は
  m =ρQ kg/s
ρは流体の密度kg/m^3、Qはm^3/s
連続して毎秒、位置エネルギmgHを与え続けるから、その動力は
  L = mgH = ρQgH J/s
これもまた分数化すると、
  L1/L2 = (Q1H1)/(Q2H2)
これにQとHの式を入れると、
(以降は自分で。)



(分数にしてただの数にする方法を、無次元化や基準化などとも言います)

 
根拠は「運動とエネルギーの関係」です。
ポンプを理想化した原理的な表現です。


1.流量。
直径Dの車輪がn回転/秒で回ってる場合の外周の速度は
  V = πD・n  です。
外周に羽根を付けて水を掻くと、水も同じ速度Vで動きますから、

(1) 流量Qは 『 回転数に比例 』 します。
(2) Q = k・n  比例式で表した。kは比例係数。
(3) Q1/Q2 = n1/n2 係数を使わない形の比例式。

 (3)は、(2)の適当な2カ所、Q1=k・n1、Q2=k・n2 を分数にしただけのものです。分数にするとkが...続きを読む

Q熱交換の基礎式を教えてください。

熱交換器における基礎式を教えてください。
蒸気と水での熱交換を行う際に、入口温度と出口温度の関係、
それに流速等も計算のデータとして必要なんだと思うんですが、
どういう計算で熱量、流速を決めればいいのか熱力学の知識がないので
分かりません。
いろんな書籍を買って勉強していますが、難しくて分かりません。
それに独学ですので、聞ける人がいなくて困っています。
どなたか、簡単に熱交換の基礎式などを教えてください。

Aベストアンサー

 伝熱の計算は非常に難しいのですが、「難しい」と言っているだけでは先に進みませんので、そのさわりを。
 基本式は、Q=UAΔtです。
 Q:交換される熱量
 A:伝熱面積
Δt:伝熱面内外の温度差
  (冷却水入出の差ではない)

 ここで曲者は、U(総括伝熱係数とか熱貫流係数とか呼ばれるもの)です。
 Uの内部構造は、1/U=1/h1+1/hs1+L/kav.+1/hs2+1/h2と表現され、hを見積もる事が大変難しいのです。
 h:伝熱面の境膜伝熱係数、内外2種類有る。
 hs:伝熱面の汚れ係数、内外2種類有る。
 L:伝熱面厚み
 kav:伝熱面の熱伝導率の異種温度の平均、熱伝面内外で温度が異なり、温度によって変化する熱伝導率を平均して用いる。
 hは、流体の種類や流れる速さ(主な指標はレイノルズ数)によって変化します。
 hsは、どの程度見積もるか、、、設備が新品ならZeroとしても良いのですが、使い込むとだんだん増加します。
 更には、Aも円管で厚みが有る場合は、内外を平均したり、Δtも入り口と出口の各温度差を対数平均するとか、色々工夫すべきところがあります。

>冷却管はステンレス製(SUS304)です。
 →熱伝導度の値が必要です。
>冷却管の中の水の温度は入口が32℃で出口が37℃です。>流量は200t/Hr程度流れております。
 →冷却水が受け取る熱量は、200t/Hr×水の比熱×(37-32)になります。この熱量が被冷却流体から奪われる熱量です。=Q
>冷却管の外径はφ34で長さが4mのものが60本
>冷却管の外径での総面積は25.6m2あります。
 →冷却管の壁厚みの数値が計算に必要です。
 伝熱面積も外側と内側を平均するか、小さい値の内側の面積を用いるべきです。

 まあしかし、現場的な検討としては#1の方もおっしゃっているように、各種条件で運転した時のU値を算出しておけば、能力を推し測る事が出来ると思います。
 更には、熱交換機を設備改造せずに能力余裕を持たせるには、冷却水の温度を下げるか、流量を増やすか、くらいしか無いのではないでしょうか。

 伝熱の計算は非常に難しいのですが、「難しい」と言っているだけでは先に進みませんので、そのさわりを。
 基本式は、Q=UAΔtです。
 Q:交換される熱量
 A:伝熱面積
Δt:伝熱面内外の温度差
  (冷却水入出の差ではない)

 ここで曲者は、U(総括伝熱係数とか熱貫流係数とか呼ばれるもの)です。
 Uの内部構造は、1/U=1/h1+1/hs1+L/kav.+1/hs2+1/h2と表現され、hを見積もる事が大変難しいのです。
 h:伝熱面の境膜伝熱係数、内外2種類有る。
 hs:伝熱面の汚れ係数、内外2...続きを読む

Q圧縮比と圧力比って同じ???

圧縮比と圧力比はどう違うのでしょうか?

選択問題で両方でてきて、圧縮比を選んだら、間違いで圧力比が正解でした。

納得できません。

問題がおかしいのでしょうか。

<実際の文章>
ガスタービンの熱効率は理論的には「圧力比」のみの関数である。

Aベストアンサー

圧力比は圧力と圧力の比 たとえば p1/p2 だと思います。
圧縮比は、シリンダーのように、密閉した容器に入っている気体を圧縮したときの、体積の比、最初の体積がV1 圧縮後の体積がV2とすると、圧縮比は、V2/V1、のことだと思います。ものすごく時間をかけて、ゆーっくり、しずーかに圧縮すると、PV = 一定で、p1/p2 = V2/V1 になるかも知れませんが、ガスタービンのように高速だと、PV = 一定にはならないので、そのようにはならないのではないかと思います。

Q断熱圧縮は等エントロピー変化で、等エンタルピー変化とならないのはなぜ?

モリエル線図(p-h線図)で冷凍サイクルの勉強をしています。

圧縮機における圧縮はごく短時間で行われ、外部との熱のやり取りがほとんど行われず断熱圧縮とみなせるため、エントロピーの定義式
S=∫dQ/T
においてdQ≒0とし、エントロピー一定の変化を起こすということは分かりました。
http://www.jsrae.or.jp/E-learning/saikuru2/saikuru2.html

ここで疑問なのは、
熱のやり取りがないのに、なぜ、エンタルピーは増加するのでしょうか?
圧縮時に外界から受ける仕事がエンタルピーの増加につながっているとも考えたのですが、熱の授受がないと仮定しているので、仕事のエネルギーがどこに保存されているのか説明がつきません。
圧縮による仕事はどこへ行ってしまったのでしょうか?

また、膨張弁では、仕事もせず熱も出入りしないため、等エンタルピー変化を起こすようですが、これも断熱変化、および、等エントロピー変化と考えられるのでしょうか?

熱力学初心者なので、用語の理解が間違っているかもしれませんのでご指摘お願いします。

モリエル線図(p-h線図)で冷凍サイクルの勉強をしています。

圧縮機における圧縮はごく短時間で行われ、外部との熱のやり取りがほとんど行われず断熱圧縮とみなせるため、エントロピーの定義式
S=∫dQ/T
においてdQ≒0とし、エントロピー一定の変化を起こすということは分かりました。
http://www.jsrae.or.jp/E-learning/saikuru2/saikuru2.html

ここで疑問なのは、
熱のやり取りがないのに、なぜ、エンタルピーは増加するのでしょうか?
圧縮時に外界から受ける仕事がエンタルピーの増加につながって...続きを読む

Aベストアンサー

モリエル線図なんて初めて聞きましたが・・・。

>熱のやり取りがないのに、なぜ、エンタルピーは増加するのでしょうか?
熱のやり取りがなければエンタルピーは変化しない(or減少する)と思っていないとこういう疑問は出てこないと思いますが、何故そう思ったのでしょうか?
とりあえず、可逆過程ならば、dH=TdS+Vdpとなります。エントロピーが一定なら(dS=0)、dH=Vdpより、圧力の増加とともにエンタルピーも増加しますね。

>圧縮による仕事はどこへ行ってしまったのでしょうか?
内部エネルギーです。実際、温度が上昇してるんですよね。

>また、膨張弁では、仕事もせず熱も出入りしないため、等エンタルピー変化を起こすようですが、これも断熱変化、および、等エントロピー変化と考えられるのでしょうか?
膨張弁の構造を知らないのですが、(圧力を保った)低圧の空間に一定の圧力で気体を"押し出す"ような過程であれば、断熱変化ですが、エントロピーは上昇します。(不可逆過程なので)

Qポリトロープ変化とは??

 ポリトロープ変化について、ネットで調べたところ、下記のような説明文がありました。

 『エンジンに混合気または燃焼ガスを圧縮する場合,実際には熱の一部を外気や冷却水などで取られて圧力と温度との関係は等温変化と断熱変化との中間的変化で行われます.これをポリトロープ変化という.』

>等温変化と断熱変化との中間的変化
の文面がいまいち理解できません。

どなたか、『ポリトロープ変化とは??』という質問に対して、もう少し噛み砕いて(上記とは別な例を用いて)ご教示下さい。

宜しくお願いします。

Aベストアンサー

気体の圧力pと体積Vとの間に
 pV^n=一定
の関係が満たされるとき、指数nをポリトロープ指数といいます。

よく用いられる典型的な変化においては
 n=0: 定圧変化 (p=一定)
 n=1: 等温変化 (pV=nRT=一定)
 n=γ: 断熱変化 (γ: 比熱比)
 n=∞: 定積変化 (V=一定)
と表されます。

いろいろな変化が指数nを変えることで表されるので便利なのです。

Q冷凍機 「冷凍能力」と「熱交換器の温度差」の関係

冷凍機 「冷凍能力」と「熱交換器の温度差」の関係

現在冷凍機について勉強中で、文献を読む中で冷凍能力(Cooling Power)と、高温側の熱交換器と低温側の熱交換器との温度差(Temperature Span)との相関について述べられていました。
温度差が大きいとき冷凍能力は小さくなり、逆に温度差が小さいときには冷凍能力が大きくなるようです。
この部分がよく理解できません。どおなたか詳しい方がおられたらよろしくお願いします。

Aベストアンサー

 高温側の熱交換器の事を(冷媒を凝縮させる装置である事から)凝縮器、低温温側の熱交換器の事を(冷媒を蒸発させる装置である事から)蒸発器と呼びます。
 凝縮器の温度が高く、蒸発器の温度が低い程、温度差は大きくなります。
 そして、凝縮器の温度が高い程、冷媒の膨張前温度は高くなり、蒸発器の温度が低い程、冷媒の蒸発器出口温度は低くなります。
 モリエル線図(p-h線図)に冷凍サイクルを描く時の事を考えてみて下さい。
 膨張弁やキャピラリー(毛細管)による膨張は自由膨張に近いため、エンタルピー変化は無いものと見做しますから、冷凍サイクル中の膨張行程を表す線は、垂直の直線になります。
 膨張行程は極めて短時間の内に行われますから、膨張行程が行われている間に、冷媒と外部との間で熱が移動する時間が無いため、膨張行程中には熱の出入りは無いものと見做せますし、液体は、熱の出入りが無ければ、圧力が変化しても温度やエンタルピーは変わりませんから、冷凍サイクル中の膨張行程を表す線は、飽和液線上の膨張前温度を表す点(等温線と飽和液線の交点)を通ります。
 圧力が高い程、冷媒が蒸発する温度は高くなりますから、飽和液線上の温度は圧力が高い程高くなり、飽和液線は右上がりに傾いていますから、膨張前温度が高い程、膨張行程におけるエンタルピーは大きくなります。
 一方、蒸発器内の圧力は、蒸発器内の何処でも殆ど同じですから、冷凍サイクル中の蒸発行程を表す線は、水平の直線になります。
 冷凍機の圧縮機(コンプレッサー)が液体を吸い込むと、圧縮機が損傷してしまいますから、蒸発器出口において冷媒は完全に気化していなければなりません。
 そのため、蒸発行程のラインの右端は、必ず乾き飽和蒸気線よりも右側の、乾き蒸気の領域に突き出ていなければなりません。(乾き飽和蒸気線よりも左側の状態では液相が含まれている)
 気体は、臨界圧力よりも充分に低い圧力の下では、その振る舞いが理想気体に近くなり、理想気体のエンタルピーは圧力に関わらず、温度にのみに比例しますから、蒸発器出口温度が低い程、冷媒のエンタルピーも小さくなります。
 凝縮器出口における冷媒温度を高くすると、膨張前温度も高くなって、膨張行程におけるエンタルピーが大きくなり、その一方で蒸発器出口温度を低くすると、蒸発器出口におけるエンタルピーが小さくなるのですから、凝縮器と蒸発器の温度差を大きくする程、蒸発行程を表すラインの長さは短くなります。
 蒸発行程を表すラインの両端におけるエンタルピーの差は、即ち単位質量の冷媒が蒸発器内で吸収する熱エネルギーの量の事ですから、凝縮器と蒸発器の温度差を大きくする程、単位質量の冷媒が蒸発器内で吸収する熱量は少なくなります。
 単位質量の冷媒が吸収する熱量が少なくても、循環する冷媒の量が多ければ、冷凍能力を大きくする事は可能な様に思えるかも知れません。
 この場合は冷凍機が消費する電力が一定の場合を考えている訳ですから、圧縮機が単位質量の冷媒に対して行う仕事が少なくて済む程、より多くの冷媒を循環させる事が出来ます。
 圧縮行程は断熱過程であるため、等エントロピー曲線に沿って、左下から右上がりに進みます。
 圧縮機が単位質量の冷媒に対して行う仕事は、圧縮行程を表すラインの両端におけるエンタルピーの差になりますから、圧縮機が単位質量の冷媒に対して行う仕事を少なくするためには、凝縮器内の圧力を低くすると良い事になります。
 しかし、圧力を低くし過ぎて、凝縮器内の圧力に等しい圧力下における冷媒の蒸発温度が、凝縮器内の温度よりも低くなってしまいますと、冷媒は液化せず、蒸発潜熱を利用する事が出来なくなります。
 凝縮器の温度をあまり下げる事は出来ませんから、結局、冷媒の循環量をあまり増やす事は出来ません。
 結果、凝縮器と蒸発器の温度差を大きくすると、冷媒が吸収する熱量が少なくなる事による影響が上回り、冷凍能力が小さくなります。
 逆に、凝縮器と蒸発器の温度差を小さくすると、冷凍能力が大きくなります。

 高温側の熱交換器の事を(冷媒を凝縮させる装置である事から)凝縮器、低温温側の熱交換器の事を(冷媒を蒸発させる装置である事から)蒸発器と呼びます。
 凝縮器の温度が高く、蒸発器の温度が低い程、温度差は大きくなります。
 そして、凝縮器の温度が高い程、冷媒の膨張前温度は高くなり、蒸発器の温度が低い程、冷媒の蒸発器出口温度は低くなります。
 モリエル線図(p-h線図)に冷凍サイクルを描く時の事を考えてみて下さい。
 膨張弁やキャピラリー(毛細管)による膨張は自由膨張に近いため、エ...続きを読む

Q気体の圧力と流量の関係

 初歩的な質問で申し訳ないのですが、
気体(例えばair)を、ある一定の圧力をかけてホースに送り込むとします。
そのホースの中間に、流量調整を行える器具を取り付けて、流量を絞り込んだ時、
その器具の前と後では圧力は変わるのでしょうか?
 又、圧力と流量は比例するのでしょうか?

Aベストアンサー

「静圧」と「動圧」があります.
静圧と動圧を足して圧力で表したものを「全圧」,
それを温度で表したものを「全温」と言います.

全圧をPt,静圧をPs,密度をρ,流速をvとすると,
Pt=Ps+(ρv^2)/2
です.「ベルヌーイの法則(又は定理)」ですね.

因みに,オリフィス等の流量調整器の前後ではちょっと複雑です.
小さな穴を通過するときは「絞り=等エンタルピー過程」となるからです.
H=Cp・T=Cv・T+PV, T:静温,P:静圧,V:比体積
ここで,オリフィス前後1→2で変数が,
Ps1,V1,T1,v1,Ps2,V2,T2,v2
の8つあって,
・等エンタルピー過程である
・前後の静圧を測定
・ベルヌーイの法則
・状態方程式
を用いれば,全てビシッと求まります.

因みに,もしオリフィス前後で臨界圧力比を越えていれば,
オリフィスで音速となります.


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング