円に外接する多角形の周は、どうして円周より大きいのでしょうか。

円周と面積を関係づけた(同じ比例定数πがあらわれることを示した)アルキメデスの「円の計測」を読んでいて、円に外接する多角形の周は円周より大きいことが当然のこととして使わていることが理解できませんでした。
円に内接する多角形の周は円周より小さいのは明らかとして、外接多角形の周が円周より大きいことは自明なのでしょうか。

おわかりの方教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (12件中11~12件)

>st-1701さん


自明ではありません。例に挙げられている三角形ですが、底辺は2辺の和より短いことは明らかですが,円周(の一部)は底辺より長いことは判りますが、2辺の和との大小は不明です。

昔、解析概論(一松信)で同様な議論を読みました。詳細は忘れましたが、結構長い証明だったと思います。
ご存知の方フォローお待ちします。
    • good
    • 0
この回答へのお礼

おっしゃる通りであります。

お礼日時:2001/03/20 03:50

円に内接する多角形の周が円周より小さいのは明らか


ならば円に外接する多角形の周が円周より大きいのも不思議じゃないように思いますが。
円に外接する多角形の一部を考えてみてください。
多角形の頂点と円に接する接点2つで近似の三角形ができますよね。
三角形の2つの辺の和は他の1辺より長いの明らかですよね。
そう考えて、すべての合計を取れば外接する多角形のほうが円周より長くなります。
こんなもんでいかがでしょうか。
    • good
    • 0
この回答へのお礼

さっそくのお答えどうもありがとうございます。
bufu4uさんがおっしゃっているように、三角形の2辺の和と円弧との大小関係は自明ではないと思いますが、、、。

お礼日時:2001/03/20 03:47

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q円に内接する正(n+1)角形の面積は、正n角形の面積よりも大きい

円に内接する正(n+1)角形の面積は、正n角形の面積よりも大きい

このことを解析的な視点と、幾何的な視点から証明したいのですが、どうにも分かりません。
なにかアイデアがありましたらいただけないでしょうか。

Aベストアンサー

正n角形の各頂点と円の中心を結んで、n個の三角形を作る。
すると、正n角形の面積は1/2×正n角形の周の長さ×三角形の高さ
になる。(三角形の高さは、円の中心から対辺への高さ)
正n角形の周の長さ、三角形の高さはnが増えると増加するので、
角数が大きくなると面積も増加する、という感じ。
実際、周の長さ=2n*sin(π/n)=2πsin(π/n)/(π/n)で、sinx/xは
x→+0のとき増加、三角形の高さはcos(π/n)で、cosxはx→+0のとき
増加する。

Q円の周長を測りたいんです。単純には外径×円周率で算出されると思うのです

円の周長を測りたいんです。単純には外径×円周率で算出されると思うのですが、他に計算する方法はありますか?外径2000のパイプの周長を計らなければならないのですが、いい方法が見つかりません。

Aベストアンサー

高所作業になるのを避けて、遠隔で測りたいのであれば、
直接に周長を測るよりも、直径を計って、質問文中の式で
計算するほうが良さそうです。離れた場所から直径を計る
のには、測量の器具・技術が使えるかも知れません。

Q円に内接する多角形の面積の公式

円に内接する多角形の面積の公式
円に内接する多角形の面積の公式

円に内接する三角形、四角形の面積を求める公式はありますが、(それぞれヘロン、ブラーマグプタの公式)
円に内接する多角形の面積を求める公式はあるのでしょうか。

あるとすれば、その公式の名前、あるいはその公式が載っているURLを教えてください。
ないとすれば、なぜないのか(つくることの不可能性)を知っていれば教えてください。
取り合えず、あるかないかだけでも教えてください。

よろしくお願いします。

Aベストアンサー

5角形以上でも各辺の長さが既知なら、外接円は決まると思いますよ。

外接円の半径が決まれば当然面積が決まります。

多角形の各辺の長さをa1,a2,・・・,an、
外接円の半径をr、
各辺に対応する中心角をθ1,θ2,・・・,θnとすると、
θ1+θ2+・・・+θn=2π
sin(θk/2)=(ak/2)/r、cos(θk/2)=√(r^2-(ak/2)^2)/r (k=1,2,・・・,n)
面積Sは、
S=Σ[k=1~n]ak*r*cos(θk/2)/2
=Σ[k=1~n]ak*√(r^2-(ak/2)^2)/2

問題は、rが求められるかどうかですが、
sin(θ1/2+θ2/2+・・・+θn/2)=0
を加法定理で分解し、
sin(θk/2)=(ak/2)/r、cos(θk/2)=√(r^2-(ak/2)^2)/r
を代入して、rに関する方程式にして解けばいいはずです。
でも5角形以上で解けるかどうかは難しいでしょうね。
数値解析で求めるなら可能ですが。

Q円に内接する多角形の性質

円に内接する多角形の性質

円に内接する三角形、四角形の性質は知られていますが、
一般化して、円に内接する多角形(n角形)の性質はあるんでしょうか?

あるなら、どのような性質か教えてください。
よろしくお願いします。

Aベストアンサー

 凸多角形になります。

 また、偶数多角形(2n角形)の場合、隣り合わない内角の和は 180(n-1) 度になります。
 (つまり、その多角形の内角の和の半分になります。)

Qアルキメデスが円周率を計算したやり方は?

Blue Backs「パソコンで挑む円周率」で教えられたのですが、世界で最初に円周率を計算により求めたのはアルキメデスとのことです。彼は円に内接・外接する正96角形の周の長さから円周率の近似値を計算し、3.14までは正確に求めたとのことです。

大変ためになる情報ですが、残念ながら私には正96角形の周の長さを求めるやり方が分かりません。アルキメデスは三角関数を知っていたのですか?
三角関数を知っているとしても、それを計算できたのでしょうか。

たぶん簡単なやり方があるのでしょうが、どなたか親切な方、教えてください。

Aベストアンサー

#2fushigichanです。お返事ありがとうございます。

>正12角形の場合は角AOC=30°なのでx=1/2と分かるのですが、正24角形は15°ではxは何になるのですか。

角AOC=30度であるから、と書いちゃったので
角度からしか求められないように誤解を与えてしまったみたいで、すみません。

もう一度、正12角形に戻ります。
二等辺三角形の頂角の二等分線(ここでは、線分OM=OC)は
底辺を二等分する、ということが分かっていますから
AM=BM
また、
AB⊥OM=OCですね。
ここで、三角形AOMと三角形CAMでそれぞれ
ピタゴラスの定理を使います。

三角形AOMにおいて、
AM=1/2AB=1/2←この時点で、もうxは求まっています。
あとは、MC=yとおいたので、
OA^2=AM^2+OM^2
1=(1/2)^2+(1-y)^2
これを解けば、yが求まります。

次に、三角形CAMにおいて、同様にピタゴラスの定理より
CA^2=AM^2+CM^2
a^2=(1/2)^2+y^2
ここに、先程求めたyの値を代入してやれば、aの値も求まります。

これによって、12a=内接正12角形の周囲
と求められます。

これをさらに2等分、2等分・・としていくと
同様に正多角形の周囲が求められていくと思います。

ちょっとやってみます。
先程の12角形の12分の1の三角形は、三角形OACでした
便宜上、AC=aのままとします。
角AOCの二等分線は、線分ACと直交し、二等分するので
線分ACの中点をNとします。
ONの延長線と円の交点をDとします。
今度は、AD=bとおいて、bの値を求めれば
これは正24角形なので、24b=正24角形の周囲、となりますね。

OA=OC=1
AC=aより、AN=a/2
ND=xとおくと、
三角形AONにおいて、
1^2=(a/2)^2+(1-x)^2・・・(1)
三角形DANにおいて、
b^2=(a/2)^2+x^2・・・(2)

まず、(1)の式から、xが求められますね。
そのxの値を(2)に代入することで、bも求められます。
ここでaというのは、先程求めた正12角形のACの長さです。

このように、順番に、二つの三角形の
ピタゴラスの定理だけで、長さを確定していくことができます。
これを繰り返してアルキメデスは正96角形までを計算したんですね。

ご参考になればうれしいです。

#2fushigichanです。お返事ありがとうございます。

>正12角形の場合は角AOC=30°なのでx=1/2と分かるのですが、正24角形は15°ではxは何になるのですか。

角AOC=30度であるから、と書いちゃったので
角度からしか求められないように誤解を与えてしまったみたいで、すみません。

もう一度、正12角形に戻ります。
二等辺三角形の頂角の二等分線(ここでは、線分OM=OC)は
底辺を二等分する、ということが分かっていますから
AM=BM
また、
AB⊥OM=OCですね。
ここで、...続きを読む


人気Q&Aランキング

おすすめ情報