

No.5ベストアンサー
- 回答日時:
>具体的に数値として出したかった
これは、小数点以下の精度で出したいと言うことでしょうか?
もしそうなら、#3の方のように厳密な式をたてて表計算ソフトを用いるかプログラムで計算する必要があると思います。
手計算では厳密な解を得るのは難しいと思います。
>ランダムに50~100種類異なるものが入っていると思われる集団(現実的には総数は3000~5000程度)から無作為に5~10個抽出して調べたときに、何種類調べることができるか
たとえば100種類なら、
1種類目を手に入れるまでは100/100=1箱
その後2種類目を手に入れるまでは100/99=1.01箱
その後3種類目を手に入れるまでは100/98=1.02箱
その後4種類目を手に入れるまでは100/97=1.03箱
その後5種類目を手に入れるまでは100/96=1.04箱
その後6種類目を手に入れるまでは100/95=1.05箱
その後7種類目を手に入れるまでは100/94=1.06箱
その後8種類目を手に入れるまでは100/93=1.08箱
その後9種類目を手に入れるまでは100/92=1.09箱
その後10種類目を手に入れるまでは100/91=1.10箱
という値から5種類=5.10箱が計算できて、
これを逆算すれば5種類弱になることが分かります。
同様に9.38箱で9種類10.48箱で10種類となることから、10箱では9から10種類となることが分かります。
この程度までなら、電卓でも可能だと思います。
ちなみに全種類集めるためには、
100種類で519箱、1000種類でも7485箱買えば全部揃うので、
直感よりもだいぶ小さな値な気がします。
あと、100種類以上なら上の値から見て、
5箱や10箱取り出せば5種類、10種類集まるでしょう。
この回答への補足
ここを借りて
みなさまどうもありがとうございました。
本来であれば相談料を支払うべき内容を善意の下に快く教えてくださり、大変ありがたく思っています。
点数はつけさせていただきますが、お答えいただいたみなさま全員へ感謝の気持ちで一杯です。
またどうぞよろしくお願いいたします。
私の一方的な質問にわかりやすく丁寧に答えてくださってどうもありがとうございました。
20種類全部得るのに72箱、
100種類で519箱
という具体的な数値で助かりました。
#3の方の関数もとてもありがたかったのですが、今となっては数学苦手な人たちに説明するので、sunasearchさんの説明ありがたく拝借させていただきます。
また機会がありましたらよろしくお願いいたします。

No.4
- 回答日時:
このような試行回数の期待値(平均)は確率の逆数で求められます。
たとえば、「さいころを振って初めて1の目が出るのは、
振り始めてから何回目か?」という問題には、
1の目が出る確率1/6の逆数をとって平均6回目と答えられます。
同様に、1種類目が手に入るまでに買うチョコエッグの数は、(確率)20/20の逆数をとって、(平均)1箱買う必要があります。
1種類目が手に入ってから2種類目が手に入るまで何回買わないといけないかは、(確率)19/20の逆数で(平均)20/19=1.05箱買う必要があります。
2種類目が手に入ってから3種類目が手に入るまで何回買わないといけないかは、(確率)18/20の逆数で(平均)20/18=1.11箱買う必要があります。
…
19種類目が手に入ってから20種類目が手に入るまでは、(確率)1/20の逆数で(平均)20箱買う必要があります。
したがって、全種類手に入れるには、
20/20+20/19+20/18+…+20/2+20/1=71.95箱買う必要があります。
この過程で、4種類手に入るまでの平均が4.34箱、
5種類手に入るまでの平均が5.59箱ですので、
答えは4から5種類となります(笑)
この回答への補足
説明としては理解しやすくてありがたかったです。
実はランダムに50~100種類異なるものが入っていると思われる集団(現実的には総数は3000~5000程度)から無作為に5~10個抽出して調べたときに、何種類調べることができるかを具体的に数値として出したかったものですから。
説明ありがとうございます。知りたかったのは試行回数の期待値ではなくて、5回(箱)買った場合の種類数の期待値なのです。
しかし全種類手に入れるまでに必要な個数の計算はよくわかりました。ありがとうございました。
No.3
- 回答日時:
P(n,k)を、n個買ったときにちょうどk種類ある確率とします。
P(n,1)=(1/20)^(n-1)
P(n,k)=P(n-1,k-1)*(21-k)/20+P(n-1,k)*k/20
これをもとにExcelで計算すると、
P(5,1)=0.00000625
P(5,2)=0.00178125
P(5,3)=0.05343750
P(5,4)=0.36337500
P(5,5)=0.58140000
よって、Σ(k=1,2,3,4,5)k*P(5,k)を求めると、4.52438125となりました。
ところで、
>3種類の場合は(3個と1個と1個)、(2個と2個と1個)の2通りあるから
(1/20^2)X(19/20)X(18/20)X3X2
これはおかしくて、
{(1/20^2)X(19/20)X(18/20)*(5!/3! + 5!/2!2!)}*3
ではないですか?
詳しくは、参考URLの#6の私の「蛇足」を。
参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=537481
この回答への補足
ありがとうございました。
P(n,k)=P(n-1,k-1)*(21-k)/20+P(n-1,k)*k/20
の式になぜ到達するのか理解していないのですが、というか私の頭では計算できません(^^;。
P(5,1)とかP(5,5)の計算の場合、式の中にP(5,0)とかP(4,5)とかが出てきますよね、この辺は具体的には何になるんですか?
また、5!/3!っていうのは階乗の5x4x3x2x1/3x2x1って意味でしょうか?なんで?確かに、私の計算式はなんだか変なんですけど(どうやって考えたのかもう思い出せない。爆。)
関数式への具体的な理解はできないままですが、非常に論理的な説明どうもありがとうございました。研究計画の期待値の説明のところで使わせていただきます。プレゼンする私もプレゼンされる人たちも生物学畑の人で、数学から離れて久しいので数式を理解するのはとりあえず放棄します(^^;)。
本当にありがとうございました。
No.2
- 回答日時:
私も#1さんと同じやり方で、同じ結果がでました。
他に方法が思いつきません。
蛇足ですが、
20種類全ての商品を揃えるためには平均的に71.95箱のチョコエッグを買わなければならないでしょう。(マルコフ過程で平均推移時間を算出しました)
No.1
- 回答日時:
すみませんが、チョコエッグ5箱というのは、商品1個が入っている箱のことでしょうか?それとも、運搬用の、チョコエッグが何個か入っている箱のことでしょうか?
後者の場合は、その箱の中にチョコエッグが何個入っているかも回答願います。
この回答への補足
商品1個です。すみません。
私なりに3種類弱という結果が出ているのですが、考え方があっているのかわからなくなってきたので教えていただけますと幸いです。
さっそくの補足要求ありがとうございました。
計算しなおしてみました。計算違ってた(爆汗)。
1種類のみの場合(1/20^4)X1
2種類のみの場合は(4個と1個)、(3個と2個)no
二通りあるから
(1/20^3)X(19/20)X2X2
3種類の場合は(3個と1個と1個)、(2個と2個と1個)の2通りあるから
(1/20^2)X(19/20)X(18/20)X3X2
4種類の場合はダブりがひとつだけある場合なので、
(1/20)X(19/20)X(18/20)X(17/20)X4
5種類の場合は
(19/20)X(18/20)X(17/20)X(16/20)X5
これらの数値を合計すると
3.065625種類
と出るのですが、はたしてこのやり方でいいのか?
何か他にもっと賢いやり方があって、100種類ある商品を無作為に50個買う場合の期待値(種類)とかが簡単に出せないのか?
というところを教えていただければありがたいです。
よろしくお願いいたします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 期待値について 12 2022/10/12 19:02
- 数学 一つのサイコロを6回振るとき、出る目の種類の個数の期待値はどのようになりますか?また、統計的推測によ 11 2022/06/12 10:39
- 統計学 期待値を求める問題はとりあえず確率を全部出せばいいってことで答えは出せるのですが、なぜそれぞれの確率 2 2023/07/08 23:11
- 統計学 ガチャガチャの中に、あるアニメの キャラAのフィギュアが3種類1個ずつ キャラBのフィギュアが3種類 1 2022/06/04 15:28
- その他(教育・科学・学問) 期待値について 2 2022/11/27 16:31
- 統計学 X~Ge(0.4)であるとする。このとき、p(X≧4)≦???である。チェビシェフの不等式を用いて? 1 2022/12/06 14:52
- 数学 数学の問題です。 問1: ある(人数の非常に多い)集団から無作為に6名を選んで身長を測ったところ、そ 2 2022/12/09 12:03
- 統計学 確率の問題です。 7 2022/05/07 01:08
- アクセサリ・腕時計 ムーンスウォッチの発売期間について。 スウォッチは恐らくこれまで沢山の種類が発売されてますが、1モデ 1 2023/01/13 19:27
- 法学 全部取得条項付株式の取得と引換えにする株式の発行 申請書について 1 2022/12/21 17:32
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
もし間違いは誰にでも起こると...
-
1個のサイコロを3回投げる時、...
-
プロ野球ペナントレースについて
-
コインを6回投げたとき4回以上...
-
P(A|B)などの読み方
-
高1、数学
-
袋の中に1と書かれたカードが...
-
数学の課題です。 「2枚の硬貨...
-
なぜ投資は長く続けると儲かる...
-
親より早く死んだ子が賽の河原...
-
Uber デリバリー 夜中3時、4時 ...
-
数学の質問です。 一枚の硬貨を...
-
一般常識を教えてください。1割...
-
ほぼ確実って、どういう意味で...
-
極めて個人的な確率・・・
-
ネットで間違いが定着している...
-
全ての誕生日
-
原点oから出発して数直線上を動...
-
数Aです。 12本のくじの中に5本...
-
確率:ビンゴのようなもの
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の質問です。 一枚の硬貨を...
-
なぜ投資は長く続けると儲かる...
-
一般常識を教えてください。1割...
-
「空飛ぶクルマ」という名を名...
-
30%の確率が5回連続で起きない...
-
1個のサイコロを3回投げる時、...
-
P(A|B)などの読み方
-
75%を3回連続で引かない確率
-
バッティングセンターで始めに...
-
確率0.02%って10000人に2人です...
-
Uber デリバリー 夜中3時、4時 ...
-
ガキの使いのかぶらず歌いきれ...
-
反応速度や濃度は、大きいor小...
-
コインを6回投げたとき4回以上...
-
中学校数学での確率問題への解...
-
確率
-
五分を6回連続で外すのはなん...
-
確率の問題です。 全5種類ある...
-
期日決めて丁半博打するのと、...
-
3σについて教えてください(基...
おすすめ情報