プロが教えるわが家の防犯対策術!

導体球と誘電体の問題です。
よろしくおねがいします。

導体球A(半径a)と導体球核B(内半径b、外半径c)が同心で置かれ、
aとbの間にε1の誘電体が詰められ、
Bの外側cからから半径dまではε2の誘電体で覆われ、
dより外側は真空(ε0)である状態について。
(a<b<c<d)

AにQ1の電荷、BにQ2の電荷を与えた場合の、
任意の半径位置r(0<r<∞)における電界のr方向成分と電位を求める問題です。
(基準点は無限遠点)

図があればわかりやすいと思うのですが準備する余裕がなく申し訳ありません。


導体球核の外側にまで誘電体がある…という問題に混乱してしまい、御恥ずかしながらご教示をお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

No2です。


ガウスの法則の右辺に出てくる Q は、「閉曲面内に含まれる全電荷」と定義されているので、
    c<r<∞  ⇒  Q = Q1+Q2
    a<r<b  ⇒  Q = Q1
となります。

物理的な解釈をすると、c<r では、Q1による電束密度と、Q2による電束密度が重ねあわされるのです。
    |D(r>c)| = (Q1+Q2)/4πr^2 = Q1/4πr^2 + Q2/4πr^2
    • good
    • 0
この回答へのお礼

丁寧に回答してくださりとてもわかりやすくて助かりました。
導体球と導体球殻では電界は0でいいですよね。
d<r<∞
 |D|=(Q1+Q2)/4πr^2
 V(r)=(Q1+Q2)/4πrε0
c<r<d
 |D|=(Q1+Q2)/4πr^2
 V(r)=(Q1+Q2)/4πrε2
a<r<b
 |D|=Q1/4πr^2
 V(r)=Q1/4πrε1
となりました。

まだこの問題について完璧に理解は出来ていないのでこの解に自身がないのですが・・・><
自分自身でももっと教科書を見直すなどして勉強し直そうと思います。
どうもありがとうございました!

お礼日時:2009/12/11 23:14

まず、導体球Aの中心を原点に取ります。


モデルが球対称なので、電束密度Dはr方向を向いており、r=一定 の球面において |D|=一定 です。
よって、r=一定 の球面にガウスの法則を適用すれば、電束密度を求めることができます。
    ∬D・dS = Q
     ∴ 4πr^2×|D| = Q
       |D| = Q/4πr^2

あとは、定石どおりに電位を計算するだけです。( [p→q]は積分範囲を表しております。 )

(1)d<r<∞
    V(r) = ∫E・dr = ∫|D|dr/ε0[∞→r]
(2)c<r<d
    V(r) = ∫|D|dr/ε2[d→r] + V(d)
(3)a<r<b
    V(r) = ∫|D|dr/ε1[b→r] + V(b)

詳しい計算はご自分で

この回答への補足

うっかり
(2)の+V(d)
(3)の+V(b)
を忘れてしまいました;

補足日時:2009/12/07 22:48
    • good
    • 0
この回答へのお礼

丁寧に教えてくださり感謝します。

そのまま代入して計算すると
(1) Q/4πrε0
(2) (Q/4πε2)×(1/r-1/d)
(3) (Q/4πε1)×(1/r-1/b)
となりましたが、
導体球にQ1、導体球殻にQ2の電荷が与えられている場合、この場合電束密度のQはどうすればよいのでしょうか…。
続けて質問ですみません。

お礼日時:2009/12/07 22:28

半径dまでの誘電体の外側にも薄い導電球殻があるものと考えると良いんじゃないでしょうか?誘電体の途中に帯電していない導体を差し込んでも(厚みを無視できるほど薄いものであれば)同じことですから.



で,この多層構造の団子(?)をぶった切って断面を眺めてみると,たとえば導電球殻Bもそれなりに厚みはあるわけで,仮にBの内側方向に電子が引きずられて移動すると置いてけぼりにされた外側は更に+に帯電することになって・・・と思えばわかりやすいのではないかな?と思います.
    • good
    • 0
この回答へのお礼

なるほど、さらに外側に導体球殻ということは考えませんでした。
その方法でも解法を考えてみます。

ありがとうございました。

お礼日時:2009/12/07 22:12

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

Q導体球殻の電位

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方法に自信がありません。

(3)の時、

V=-∫(∞→r)E・dr = (q/4πε_0)・(1/r)

(2)の時、
V=-∫(∞→b)E・dr -∫(b→r)0・dr = (q/4πε_0)・(1/b)

(1)の時、

V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

(1)の答えが解答では(q/4πε_0)(1/r)
ではなく
(q/4πε_0)((1/b)+(1/r)-(1/a))
となっていました。

なぜなのでしょうか。

ご教授お願い申し上げます。

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方...続きを読む

Aベストアンサー

考え方も計算も、ほぼオッケーですよ。
(1)のときの電位ですが
V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

真ん中の(b→a)の積分のときは、上で書かれているように E=0 なので
積分も0です。
ですから
V=(q/4πε0)( (1/b) - (1/∞) + (1/r) - (1/a) )
になりますね。

Q同心球導体球の接地について

同心球導体球の接地について、過去に質問されていなかったのでおねがいします。
同心球導体球において、外側の球に電荷Qを与え、内側の球を接地した場合、電界はどのようになるのでしょうか?
(内側の球の半径a、外側の球の内径b、外径cです。)
回答は、
a<r<b、c<rの場合についてお願いします。

Aベストアンサー

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷) + Q - Q'(外側の球の表面電荷) = Q - Q'
  半径 r の球面上の電界を E1(r) とすれば、Gaussの定理より、4*π*r*E1(r) =( Q - Q')/ε → E1(r) = ( Q - Q' )/( 4*π*ε*r^2 ) ---[1]
  半径 r の球面上の電位を V1(r) とすれば、V1(r) = ∫[r~∞] E1(r) dr = ( Q - Q' )/( 4*π*ε*r )
  外側の球の表面電位は V1 = V1(c) = ( Q - Q' )/( 4*π*ε*c )

  内球と外球の間にある半径 r ( a<r<b ) の球面を考えると、その球面に含まれる電荷は、内側の球の表面電荷 -Q' だけだから、
  半径 r の球面上の電界を E2(r) とすれば、Gaussの定理より、4*π*r*E2(r) = - Q'/ε → E2(r) = -Q'/(4*π*ε*r^2) --- [2]
  半径 r の球面上の電位を V2(r) とすれば、V1 - V2(r) =∫[r~b] E2(r) dr = -Q'/(4*π*ε)*( 1/b - 1/r ) 。
  式[3]から、V1 =( Q-Q' )/( 4*π*ε*c ) なので、V2(r) = V1 + Q'/(4*π*ε)*( 1/b-1/r ) = ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/r )
  内側の球は接地されているので、V2(a) = 0  →  ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/a ) = 0
  したがって、Q' = Q/{ c* ( 1/a - 1/b + 1/c ) } = Q/{ 1 + c*( 1/a - 1/b ) } --- [3]

(3)電界分布
  式[3]を式[1],[2] に代入すれば
  E1(r) = ( Q-Q' )/( 4*π*ε*r^2 ) = Q*[ 1 - 1/{ 1 + c*( 1/a - 1/b ) } ]/( 4*π*ε*r^2 ) = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  E2(r) = -Q'/(4*π*ε*r^2) = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(4)まとめ
  a<r<b のとき、E = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  c<r  のとき、 E = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷...続きを読む

Q電磁気学、電束密度Dを求める考え方について

表題について、条件として長さLの同心円筒電極間に2種類の誘電率ε1、ε2をもつ誘電体が満たされている。内電極に+Q、外電極に-Qを与えた。
この時の0誘電体内(c<r<a)での電束密度Dを求めたいのです。
添付ファイルのように閉曲面を考え、Dのベクトルを考えてみたのですが、考え方は正解でしょうか。
また、微小面積を貫くベクトルがcos0°ではない為、これ以上求められません。
ちなみに答えはD=Q/(2πrL)となります。
おそらく考え方が間違っていると思いますので教えていただけますでしょうか。※添付写真が見ずらいですがよろしくお願いいたします。

Aベストアンサー

>しかし、電束密度D、電流密度Jの場合のガウスの法則の考え方なのですが、
>電束密度D、電流密度Jの場合も↑D、↑JはQから出ており、
>閉曲面を垂直に貫くと考えてもいいのでしょうか。

話が唐突で前後のつながりが見えませんが、ガウスの定理は任意の
ベクトル場で成り立つ法則です。

またガウスの定理において、閉曲面の置き方は任意です。
ベクトル場に対して、閉曲面を直交するように
工夫すると、計算が楽に場合があるいうだけです。

ガウスの法則から直交が導き出されるわけではありません。

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q電荷が球殻内に一様に分布する問題について

「 内半径a,外半径bの球殻(aくb)があり,球殻の中心からの距離rとする.電荷Qが球殻部分(aくrくb)に一様に分布しているとき,電界と電位を求めよ.また,rくa,bくrは真空として真空の誘電率をε0する.」
という問題です.
この問題は試験問題だったため回答がないので,一応参考書などを読んで似たような問題を見たりしたのですが,今一つ理解できません.
もしよろしかったら,どなたか教えていただけないでしょうか?
よろしくお願いします.

Aベストアンサー

hikamiuさんが既にお答えされていますので、以下は具体的な計算のやり方についての話です。計算のやり方は大学の先生のご好意による講義ノート(参考URL)が公開されていますので、そこの7の6を参照してみてください。もっともその前に講義ノートの6の5で少し計算の地ならしをしてから進まれたほうが理解が速いかもしれません。

参考URL:http://www-d.ige.solan.chubu.ac.jp/goto/docs/djk1/p0idxA.ssi

Q誘電体中の導体、分極電荷などについて。

【導体が誘電率εの誘電体に囲まれているとき、真電荷の面密度ρとすると、
1:導体表面の前方の電場
2:分極電荷の面密度
はいくらか】

という問題があるのですが、真電荷というのは、導体の表面にある電荷のことですよね。その電荷に引き寄せられてマイナスの電荷が全体として導体の方を向いている、そのマイナス分を分極電荷という、と思います。(そういう理解です。)

質問なのですが、この「2」の出し方が分かりません。「1」は導体表面に微小面積dsをとって、電荷ρdsが作る電場…という具合に解いていくと思うのですが、「2」の方はよく分かりせん。解答を見ると、分極による表面密度をpとすると
EdS = 1/ε0(ρdS+pdS)
と式を立てているのですが…。なぜ「1」で求めたEをそのまま使っているのか分かりません。このEは表面の電荷だけが作ったEだから、分極電荷を式に入れたら、また違うのでは…?という曖昧な感じです。

導体の表面の電荷と分極電荷と電場の関係がよく分かりません。

よろしくお願いします。

Aベストアンサー

質問の後半に,
>なぜ「1」で求めたEをそのまま使っているのか分かりません。このEは表面の電荷だけが作ったEだから、分極電荷を式に入れたら、また違うのでは…?という曖昧な感じです。
とありましたが,「このEは表面の電荷だけが作ったEだから」という文をみて,こう思いました。

1:で求めたE(ρ/ε)は,僕の解答通りなら,誘電体内の電界です。つまり,導体表面の電荷が作ったEではなく,分極電荷の影響も考慮された電界です。だから,2:で,このEを使って解けるのです。
導体と誘電体が密着している場合は「1:導体表面の前方の電場」とは,誘電体の分極電荷のちょっと外側の電界です。この問題はこの設定だと思います。

それに対し,導体と誘電体の間に真空の隙間がある場合は「1:導体表面の前方の電場」とは,導体と誘電体の隙間の電界です。これはE=ρ/ε0 となりますが,誘電分極を考慮していません。この電界で2:は解けません。
nabewariさんはこの状態と勘違いしたのかな?と思ったのです。
----------------------------------------
僕の考えたこの問題のイメージとして,正に帯電した導体の球の回りに,誘電体が密着してぐるりと覆っていると思ってください。
1:は導体のちょっと外側の電界を出せという問題です。負の誘電分極が内部にありますので,誘電分極に左右されない ∫∫Dds=Q(真電荷) …(1) で,電束密度をだし,D=εE …(3) を利用して電界を出しました。
2:で誘電分極を出せという問題は,誘電分極が入った式 ε0∫∫Eds=Q+Q'(真電荷+分極電荷)…(2) に1:のEを代入して出しました。 
----------------------------------------

文が分かりづらくてすみません。-----------の間だけ見てくれた方が分かるかも・・

質問の後半に,
>なぜ「1」で求めたEをそのまま使っているのか分かりません。このEは表面の電荷だけが作ったEだから、分極電荷を式に入れたら、また違うのでは…?という曖昧な感じです。
とありましたが,「このEは表面の電荷だけが作ったEだから」という文をみて,こう思いました。

1:で求めたE(ρ/ε)は,僕の解答通りなら,誘電体内の電界です。つまり,導体表面の電荷が作ったEではなく,分極電荷の影響も考慮された電界です。だから,2:で,このEを使って解けるのです。
導体と誘電体が密着して...続きを読む

Q誘電体に働く力がわかりません

「面積S、横幅Lの導体平板が2枚、間隔dを空けて存在する並行平板コンデンサがある。このコンデンサに電圧Vを印加しながら、コンデンサの右端からxのところまで、誘電率εの誘電体で満たした。真空中の誘電率をε0として、誘電体に働く力Fの方向を求めよ。」
という問題がわかりません。

コンデンサに電荷Qを充電して、電源を外し、誘電体を入れる場合には、コンデンサの静電エネルギーW=(Q^2)/2Cであることから
  F = -∂W/∂x > 0
よって誘電体に働く力の向きはxの増加する方向(コンデンサに引き込まれる方向)だと思いました。

ですが、電圧Vを印加したままの状態だと、コンデンサの静電エネルギーW=C(V^2)/2なので
  W = {εSx/(d×L)+ε0S(L-x)/(d×L)}(V^2)/2
  F = -∂W/∂x
= SV^2/(2d×L)(ε0-ε)<0
よって誘電体に働く力の向きはxの減少する方向(コンデンサから追いやられる向き)だと思いました。
これであっているのでしょうか?

Aベストアンサー

考え方が間違っている。

コンデンサの静電エネルギーの変化と誘電体の運動エネルギーの和は保存しません。
保存量でないためF=-∂W/∂xとはできません。

電源がつながっている状態では電源自体が仕事をするのでその影響を考えないといけないのです。
電源がした仕事=コンデンサの静電エネルギーの増加+誘電体の運動エネルギーの増加
になります。
誘電体が中に入った時、コンデンサの静電エネルギーは増大しますが電源の行った仕事はそれ以上に大きいため誘電体の運動エネルギーは増大します。
(電荷量の増加⊿Qとすると電源の行った仕事はV⊿Qとなります。コンデンサの静電エネルギーの増大は(1/2)V⊿Qですので誘電体に(1/2)V⊿Qの仕事がなされるのです。)

Q誘電体のある同心円筒導体について

以下の問題に関する質問をさせてください。

図のような単心ケーブルがある。誘電率ε1、ε2なる二種の絶縁物を有しε1=2ε2である。
絶縁物の耐えうる最大電界の強さはともにEmであるとすれば、cが与えられたとき、このケーブルの耐えうる最大電位差はいくらになるか。

まず、結果から言うと、答えは2^(1/2)*c*Em/eらしいのです。


しかしながら、私がした計算では、
円筒の単位長あたりの電荷をQとおいて、
E1=Q/2πε1 r  E2=Q/2πε2 r
=Q/4πε2 r

ケーブルにかかる電圧Vは
V=∫[a,b]E1dr + ∫[b,c]E2dr
 =(Q/4πε2 )* (logb/a + 2logc/b)

ここまで出たのはいいのですが、
E1またはE2がEmになるとき
E1かつE2がEmになるとき
のどちらの場合で計算していっても解答通りの答えが導けませんでした。

なぜ、最初にあげた通りの答えが導けるのか分かる方がいらしたら是非ご教授お願いしたいです。

Aベストアンサー

a,bを0<a<b<cの範囲で動かした時の最大値を求めてますか?
求めているのなら計算ミスじゃないかと。

Q導体で同心の外球、内球があり内球が接地されています。

http://oshiete1.goo.ne.jp/qa3031710.html

ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。

僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。

そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。

この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?

電磁気学の理解に乏しいので詳しく教えていただきたいです。

Aベストアンサー

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.

上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.

さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.

図で表すなら

          │
      ┌───┴───┐
      │       │
      │       │
外球殻内側─┴─     ─┴─外球殻外側
                    
   内球─┬─     ─┬─無限遠
      │       │
      │       │
      └───┬───┘
          │

と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在するこ...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング