マンガでよめる痔のこと・薬のこと

g(t)=cos(wt)
をフーリエ変換したいのですが、
F[{exp(jwt)+exp(-jwt)}/2]
=F[exp(jwt)]/2+F[exp(-jwt)]/2

まではわかったのですが、この後どう進めればいいのでしょうか?
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

#1,#2です。



A#2の補足の質問の回答

>=(1/2)δ(f0-f)+(1/2)δ(f0+f)
>で合ってますでしょうか?

間違いではないけど普通は
=(1/2)δ(f-f0)+(1/2)δ(f-f0)

なお、fは周波数を表す変数、f0は信号の周波数で定数
フーリエ積分で使うδ関数の定義ではδ(f)は偶関数で
δ(-f)=δ(f)です。

>∫[-∞,∞]exp(j2πft)=δ(f)
F(f)=δ(f)…(B) の時、
フーリエ逆変換の定義式から
f(t)=∫[-∞,∞]F(f)e^(j2πft)df
=∫[-∞,∞]δ(f)e^(j2πft)df
  =e^(j2π0t)=1 …(B)
このf(t)のフーリエ変換の定義式から
F(f)=∫[-∞,∞]f(t)e^(-j2πft)dt
=∫[-∞,∞] e^(-j2πft)dt ((B)を代入)
(A)からF(f)=δ(f)なので
 ∫[-∞,∞] e^(-j2πft)dt =δ(f)
この左辺でt=-t'と置換すると
 左辺=∫[-∞,∞] e^(j2πft')dt'=δ(-f)
が出てきます。
 この式で -f=f'と置換し、f',t'を改めてf,tと書くと
 左辺=∫[-∞,∞] e^(-j2πft)dt=δ(f)
が出てきます。
以上から
δ(f)=δ(-f)=∫[-∞,∞] e^(j2πft)dt
=∫[-∞,∞] e^(-j2πft)dt
という関係があることが分かります。
    • good
    • 0
この回答へのお礼

わかりやすく教えて頂きありがとうございました!
すごく参考になりました!

お礼日時:2010/01/28 00:11

> 1/2∫exp(jwt)dt+1/2∫exp(-jwt)dt


> =1/2∫exp(jwt)dt+1/2∫exp(-jwt)dt
間違い。wを区別せず混用している。

フーリエ変換の定義式の中のωとg(t)の式のwは別物ですから、g(t)の式の
wをwoと添え字付きにするなどしないと、定義式上のように同じwを使って混乱すると思います。
なので、上の式は定義式を適用したことにはなっていないので、間違い。
wを区別して定義式を適用して計算をしてみてください。

この回答への補足

1/2∫exp(jw0t)exp(-jwt)dt+1/2∫exp(-jw0t)exp(-jwt)dt
=1/2∫exp{j(w0-w)t}dt+1/2∫exp{-j(w0+w)t}dt
=1/2∫exp{j2π(f0-f)t}dt+1/2∫exp{-j2π(f0+f)}tdt
=1/2δ(f0-f)+1/2δ(f0+f)

で合ってますでしょうか?
ところで
∫exp(j2πft)=δ(f)
になるのがよくわからないのですが、教えてもらえますでしょうか?

補足日時:2010/01/27 19:45
    • good
    • 2

> この後どう進めればいいのでしょうか?


フーリエ変換の定義式を適用した後、δ(x)関数の定義式を逆に使えば、
δ関数2つの輝腺スペクトルになりませんか?

この回答への補足

1/2∫exp(jwt)dt+1/2∫exp(-jwt)dt
=1/2∫exp(jwt)dt+1/2∫exp(-jwt)dt
δ(t)=1で
=1/2∫δ(t)exp(jwt)dt+1/2∫δ(t)exp(-jwt)dt
まで合ってますでしょうか?
この後はどうすればいいのですか?

補足日時:2010/01/27 15:20
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qフーリエ級数|cosx|

f(x)=|cosx|
をフーリエ級数で近似したいのですがa0、ak、bkがずべて0になってしまうのですが・・・
この関数はフーリエ級数で近似できないのですか?

Aベストアンサー

> 答えは
> 2/π +(4cos2x)/3π -4cos4x/15π+・・・+(4cos2nx×(-1)^(n+1))/(4n^2-1)π+・・・・
> でよいでしょうか?

そうだと思います.

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Qexp(ikx)の積分

exp(ikx)のマイナス無限大から無限大までの
積分の公式または方法はありますか?
iは虚数でkは定数です。

Aベストアンサー

それはδ関数になります。普通に積分しても答は出ません。

たとえば、

∫[-a→a] exp(ikx) dx = 2a [sin ka]/[ka] = 2a sinc(ka)

2a sinc(ka)は-∞から+無限大までkで積分すると
aによらず面積が2πになる関数で、a→+∞の極限をとったものを
2πδ(x)と書きます。これがδ関数です。なので、

∫[-∞→∞] exp(ikx) dx = 2πδ(x)

Qexp(-t/T)cos(ωt)のフーリエ変換について教えてください。

フーリエ変換について質問です。
exp(-t/T)cos(ωt)のフーリエ変換に行き詰っています。積分区間は-∞→∞で
∫exp(-t/T)cos(ωt)exp(-iωt)dt (T,ωは定数)としてexp(-iωt)=cos(ωt)-isin(ωt)を利用して
∫exp(-t/T){cos(ωt)}^2dt-i∫exp(-t/T)cos(ωt)sin(ωt)dt
=1/2[∫exp(-t/T){cos(2ωt)+1}dt-i∫exp(-t/T)sin(2ωt)dt]
と変形し、それぞれの項について部分積分を試みたのですが、最終的に発散してしまい答えにたどり着きません。

また、答えは実数部が吸収型、虚数部が分散型のピークのグラフが描けるはずなので、どこかで超関数を用いなければならないと思うのですが、どこで使うのかも分かりません。
どなたか、よろしくお願い致します。

Aベストアンサー

たびたびすいません

もう一つ#5の訂正です

>G(s) = (π/2){δ(s-ω)+δ(s+ω)}



G(s) = π{δ(s-ω)+δ(s+ω)}

が正しいです。以後、1/2がすべて余分で最終結果は

= (1/2) { T/[1+i (s-ω) T] + T/[1+i (s+ω) T]

になります。

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qフーリエ変換について教えてください

フーリエ変換をすると横軸が時間から周波数になるのはわかったのですが、縦軸が何になるのかわかりません。

一般的に縦軸はなにになるのでしょうか?

また横軸が時間で、縦軸が距離をフーリエ変換したら縦軸は何になるのでしょうか?

よろしくお願いします。

Aベストアンサー

時間関数をフーリエ変換すると結果は、その時間関数の周波数成分が
得られます。スペクトルとも言います。従って、縦軸は、周波数成分です。一般に複素数です。
大きさと偏角による表現もできます。
大きさの方は振幅特性、位相角の方は位相特性と呼ばれます。
画像のように空間座標の上の関数の場合には、フーリエ変換すると
空間周波数成分が得られます。横軸は、空間周波数(2次元)となります。
対象とする関数により結果はそれぞれ意味が異なります。
「一般に何になる」とは言えません。

>横軸が時間で縦軸が距離の場合・・・
フーリエ変換の結果は、距離を表す時間関数の周波数成分です。

フーリエ変換の対象の関数は別に時間関数でなければならないということは
ありません。従って、フーリエ変換の結果は適用する人が解釈(定義)すれば
よいと思います。
たとえば、
時間関数をフーリエ変換し、その結果の絶対値の対数のフーリエ変換を
することもあります。これの結果には、発明者らがケプストラムという名前
をつけています。Cepstrum は Spectrum から作った造語です。

時間関数をフーリエ変換すると結果は、その時間関数の周波数成分が
得られます。スペクトルとも言います。従って、縦軸は、周波数成分です。一般に複素数です。
大きさと偏角による表現もできます。
大きさの方は振幅特性、位相角の方は位相特性と呼ばれます。
画像のように空間座標の上の関数の場合には、フーリエ変換すると
空間周波数成分が得られます。横軸は、空間周波数(2次元)となります。
対象とする関数により結果はそれぞれ意味が異なります。
「一般に何になる」とは言えません。

>横軸が...続きを読む

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Qf(x)=|sinx| のフーリエ展開がわかりませ

【問題】周期2πにおいて

f(x)=|sinx| のフーリエ展開
のやり方や回答を教えてください。

Aベストアンサー

sin(x)は周期2πの奇関数ですが
f(x)=|sin(x)| は周期πの偶関数です。

従って
>【問題】周期2πにおいて
は周期2πではなく、周期(基本)周期TはT=πと考えられます。

なのでf(x)は基本周期T=πでフーリエ級数展開

f(x)=a[0]/2 +Σ(n=1,∞)a[n]cos(nwox) + Σ(n=1,∞) b[n]sin(nwox)
(ただし wo=2π/T=2。展開係数の[ ]は下付き添字を表す。)

と展開できます。質問のf(x)が偶関数なので

 b[n]=0 (n,1,2, ... )
 f(t)=a[0]/2 +Σ(n=1,∞)a[n]cos(nwox)

と展開されます。展開係数は

 a[0]=(2/T)∫(-T/2,T/2) |sin(x)|dx=(4/π)∫(0,π/2) sin(x)dx=4/π
 a[n]=(2/T)∫(-T/2,T/2) |sin(x)|cos(nwox)dx
   =(4/π)∫(0,π/2) sin(x)cos(2nx)dx
   =(2/π)∫(0,π/2) {sin((2n+1)x)-sin((2n-1)x)}dx
   =-4/{π(4n^2-1)} (n=1,2, ... )

となります。

sin(x)は周期2πの奇関数ですが
f(x)=|sin(x)| は周期πの偶関数です。

従って
>【問題】周期2πにおいて
は周期2πではなく、周期(基本)周期TはT=πと考えられます。

なのでf(x)は基本周期T=πでフーリエ級数展開

f(x)=a[0]/2 +Σ(n=1,∞)a[n]cos(nwox) + Σ(n=1,∞) b[n]sin(nwox)
(ただし wo=2π/T=2。展開係数の[ ]は下付き添字を表す。)

と展開できます。質問のf(x)が偶関数なので

 b[n]=0 (n,1,2, ... )
 f(t)=a[0]/2 +Σ(n=1,∞)a[n]cos(nwox)

と展開されます。展開係数は

 a[0]=(2/T)∫(-T/2,T/2) |sin(x)|...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング