ネットが遅くてイライラしてない!?

eの積分について

∫e^(ix)dxの不定積分について質問です。

∫e^(ix)dx = (1/i)・e^(ix)+C = -i・e^(ix)+C

この数式は正しいでしょうか?

このQ&Aに関連する最新のQ&A

eの積分」に関するQ&A: eの積分

A 回答 (3件)

誤りではないと思いますが


∫e^(ix)dx = (1/i)・e^(ix)+C = -i・e^(ix)+C
=e^(i(x-π/2))+C
=sin(x)-i*cos(x)+C
    • good
    • 3
この回答へのお礼

ありがとうございました。
解いてて不安になってきましたので質問させていただきました。

お礼日時:2010/05/19 16:45

こんにちわ。



>この数式は正しいでしょうか?
正しいですね。
オイラーの公式:e^(ix)= cos(x)+ i* sin(x)を用いれば示すことができます。
    • good
    • 0
この回答へのお礼

ありがとうございました

お礼日時:2010/05/19 16:45

正しいです。


積分に経路依存性も無いし、
その計算で完璧だと思います。
    • good
    • 0
この回答へのお礼

ありがとうございました。

お礼日時:2010/05/19 16:45

このQ&Aに関連する人気のQ&A

eの積分」に関するQ&A: e^-2xの積分

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qexp(ikx)の積分

exp(ikx)のマイナス無限大から無限大までの
積分の公式または方法はありますか?
iは虚数でkは定数です。

Aベストアンサー

それはδ関数になります。普通に積分しても答は出ません。

たとえば、

∫[-a→a] exp(ikx) dx = 2a [sin ka]/[ka] = 2a sinc(ka)

2a sinc(ka)は-∞から+無限大までkで積分すると
aによらず面積が2πになる関数で、a→+∞の極限をとったものを
2πδ(x)と書きます。これがδ関数です。なので、

∫[-∞→∞] exp(ikx) dx = 2πδ(x)

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q虚数の入った積分

微分するときは虚数が入っていても定数のように扱えるわけですが、積分の場合はどうなのか知りたいので質問させていただきました。
たとえば以下のような場合です。
∫i*cosxdx (積分範囲は0から2π)
この場合微分のときと同じようにiを定数として扱えばよいのでしょうか?それとも複素積分?というものを使わないといけないのでしょうか?
どなたか教えてください。よろしくお願いします。

Aベストアンサー

積分した関数を微分すると元に戻ります。(微分積分学の基本定理)

∫i*cosxdx=i*∫cosxdx=i*sinxとなります。
では、確認のためにi*sinxを微分してみます。
微分するとき虚数が入っていても定数のように扱えるということをご存知ですね。
(i*sinx)'=i*cosxとなり∫i*cosxdxの被積分関数に一致します。

結論

積分の場合も微分の場合と同様に虚数を定数のように扱えます。
数学の場合大抵、双対性という性質があり、この場合微分と積分の双対性により、自然に導かれるのです。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Qe^iθの大きさ

今日読んだ本に

絶対値(e^iθ) = √cosθ^2+sinθ^2 = 1

と書いてありました。
オイラーの公式はe^iθ=cosθ+i sinθですよね

絶対値(e^iθ) =√e^i2θ=cos2θ+ i sin2θ=1

とド・モアブルの定理を使った式でもできているんですか?
上の式も下の式もよくわかりません
どなたか両方詳しく教えて下さい。

Aベストアンサー

絶対値(e^iθ) =√e^i2θ=cos2θ+ i sin2θ=1

この部分は、実数rに対しては、|r|=√(r^2)となるのですが、
複素数cのたいしては、
|c|=√(c*(cの共役複素数))
となります。
(e^iθ)の共役複素数は(e^-iθ)ですから、

絶対値(e^iθ) =√((e^iθ)*(e^-iθ))=√(e^0)=√1=1
となります。

実数と複素数では絶対値の計算が少し異なります。

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Qeのマイナス無限大乗

lim(t→∞) 1-e^(-t/T)
T:定数

というのがあって、極限値が1になることは手計算で分かったのですが、
数学的に1になる理由が分かりません。

e^(-∞)=0になる理由を数学的に教えてください。

Aベストアンサー

e^(-n) = (1/e)^n
であり、
0<|1/e|<1
だから

Qexp(f(x))の積分方法

もう一つ教えてください。
exp(f(x))の積分方法はどうやって計算するのでしょうか。
先ほど教えていただいた
http://www-antenna.ee.titech.ac.jp/~hira/hobby/symbolic/derive.html
にも載っていませんでした。

私が持っている微分積分の公式集ではexp(ax)=(1/a)e^axということしか載っていませんでした。
解る方お願いします。

Aベストアンサー

微分ができるのは、微分の結果を表す関数が定義された関数(初等関数と呼ばれている)だけで表現できるからです。
所が積分結果を表す関数が初等関数の中になければ積分結果を関数で表すことができません。つまり公式集に全ての初等関数の組み合わせで作られた関数の積分結果を表す関数が初等関数の組み合わせで書き表せないケースが多く存在します。つまり積分公式集に書けない関数が存在します。
e^(x^2), sin(k*cos(2x))などは積分結果を式で表現できません。
しかし関数が存在するわけですから数値積分や積分範囲が決められた定積分などは可能です。積分結果は数値として出てきます。
積分結果が初等関数で表せない場合の積分は、数値積分の他に、特殊関数(多くは積分形式で定義されていることが多い)で表す場合があります。

微分公式集は左の列に「微分される関数」、右の列に「微分結果」を書いてあります。
(不定)積分は微分の逆ですから、微分公式集の左の列と右の列を入れ替えて、左の列に「被積分関数」、右の列に「積分結果」と書けば済みます。
そうは言っても、使い安い微分公式集や積分公式集になるわけではありません。
左側の列には通常積分または微分したい関数の形で並べてないと使いやすい公式集といえません。
微分公式集の場合
e^f(x)→f'(x)e^f(x)
積分公式集の場合
f'(x)e^f(x)→e^f(x)
と形式上はなりますが
積分公式集の場合
xe^{(x^2)/2}→e^{(x^2)/2}
e^{(x^2)/2}→ nan
cos(x)e^sin(x)→e^sin(x)
(1/x)e^log(x)→e^log(x)
などを一覧に書き出しておけば使い物になります。

使いやすい積分公式集を作ってください。

微分ができるのは、微分の結果を表す関数が定義された関数(初等関数と呼ばれている)だけで表現できるからです。
所が積分結果を表す関数が初等関数の中になければ積分結果を関数で表すことができません。つまり公式集に全ての初等関数の組み合わせで作られた関数の積分結果を表す関数が初等関数の組み合わせで書き表せないケースが多く存在します。つまり積分公式集に書けない関数が存在します。
e^(x^2), sin(k*cos(2x))などは積分結果を式で表現できません。
しかし関数が存在するわけですから数値積分や積...続きを読む

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング