ネットが遅くてイライラしてない!?

f(x)=x^2の逆関数って
どう計算したらy=√xになるんですか?

計算過程を教えてください!
答えが合わなくて困ってます。

A 回答 (3件)

もう良い回答が出ていますが。


この問題には2点ポイントがあります。

まず、
f(x)=x^2
Y=x^2
ですよね。
ここでYに初期条件が出てきます。
Y=x^2なのでY≧0という条件が手に入ります。
問題文にx、Yは実数だという条件が通常はあるハズです。

この初期条件を見落とさないという感覚は意外と身に付かず
東大に合格する学生でも秋ぐらいまで、できない事も多いです。
繰り返し問題を解くことでこの感覚は身に付きますので、頑張ってください。
この問題の難しいポイントはここにあります。
あとは機械的に解くだけです。

逆関数はx、Yを逆に書いて解けば良いので
x=Y^2 Y=±√x
これと初期条件Y≧0より
Y=√xとなります。
    • good
    • 5
この回答へのお礼

詳しくありがとうございます。
疑問が解決しました!!

お礼日時:2011/05/22 20:43

#1です。

普通に解くとy=±√xとなり、xの値に対してyが二つの値を持ってしまうので、元の(逆関数にする前の)関数でx>=0みたいな条件を付けないといけないですね。
    • good
    • 4
この回答へのお礼

確かに問題にも条件あります。
だから答えが±で出ても-は不適になるんですね!!

お礼日時:2011/05/22 20:42

y=x^2 のxとyを入れ替えて


x=y^2
これをyについて解けば終わりです。
    • good
    • 0
この回答へのお礼

なるほど…
y= にして解くんですね!!

お礼日時:2011/05/22 20:40

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q次の関数の逆関数と、定義域、値域をもとめてください!

次の関数の逆関数と、定義域、値域をもとめてください!

できればわかりやすく解説つきでお願いします!!

y=√1-2x -1

Aベストアンサー

y=√(1-2x)-1 …(1)
の定義域は √内=1-2x≧0 から x≦1/2
値域は y≧-1

逆関数は
xとyを入れ替えて
x=√(1-2y)-1 から
(x+1)^2=1-2y
2y=1-(x+1)^2=-x^2-2x
∴y=-(1/2)x^2 -x …(逆関数)

逆関数の定義域と値域は(1)のxとyが入れ替わって
 定義域は x≧-1
 値域は y≦1/2
となります。

お分かりですか?

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q累乗の逆(対数?)の計算方法を教えて下さい

Excelで累乗を使った計算をしているのですが、
計算方法が分からないので教えて下さい。

累乗の計算で次のような式があるとします。

y=3^x

y=81の時のxの値は、x=LOG(81,3)=4と分かります。

(LOG(数値,底) はExcelで対数を求める関数です)

ですが、同様に次のような式が与えられた時の
xの求め方が分かりません。(同様にy=81とします)

 y=x^4

Excelに限らず一般的な解き方でかまいませんので、
ご存知の方お願い致します。

Aベストアンサー

こんにちは!
関数powerを使えば算出できます!
power(a,b)でaのb乗を計算するので、y=x^4でしたら、(xもyも正ならば)指数法則からy^(1/4)=xなので、
power(81,0.25)で計算できます!
ただ、y=x^4だと-3も解ですので、負の場合も考える必要があるなら考えないといけませんが…

Qlim[n→∞](1-1/n)^n=1/e について

こんにちは

lim[n→∞](1+1/n)^n=e
が成り立つことは簡単に示せるのですが、
lim[n→∞](1-1/n)^n=1/e
となることの証明はどのようにすればいいのでしょうか?
ご存知の方がいらっしゃいましたらご回答よろしくお願いします。

Aベストアンサー

e=lim(1+t)^(1/t)   〔t→0〕
がeの定義なので、(t→+0でもt→-0でもOK)
-1/n=tとおきます。

n→∞のとき、t→-0なので、
(与式)=lim(1+t)^(-1/t)   〔t→-0〕

これを変形すると、
=lim{(1+t)^(1/t)}^-1   〔t→-0〕
=e^-1
=1/e

高校の範囲なら、この証明で大丈夫です。

Qなぜ逆関数はf^(-1) (x)

f(x)の逆関数はなぜ f^(-1) (x) という風にあらわしているのでしょうか・・・?

逆関数≠逆数 とは分かっていますが・・・
-1乗って 逆数みたいなイメージがあったので・・・
(xの-1乗は1/xでありxの逆数であるので)


数学的な意味があるわけではなく、「fの右上に-1がついていたら、逆関数をあらわしますよ!」という単なる「記号」のようなものとして捕らえればいいのでしょうか・・・?

ちなみに高校生です(^^; よろしくお願いします!

Aベストアンサー

高校生のようですから、簡単に説明します。
関数f(x)は、簡単にfと書くこともあります。また、関数の合成についても、知っていますね。例えば、関数f(x)と関数g(x)を合成するとf(g(x))となります。これを簡単に書けばfgとなります。fgと書いてあるからといって、これはfとgのかけ算ではありません。また、f(f(x)はf^(2)と書くことができます。このように、関数の合成を、かけ算と類似の記法を使います。しかし、普通のかけ算と違って、乗法の交換法則も成り立ちません。しかし、重要なことは、結合法則が成り立つことです。このように、関数の合成をかけ算と類似の記法を使った場合、
g(f(x))=x
はどのように書き表すことができますか。
gf=1
となりますね。gはfの逆関数であることはすぐにわかると思います。ここで、fは逆関数の存在する関数でなければなりません。簡単な記法では、gf=1ですから、g=f^(-1)と書くのが自然であることが理解できるのではないでしょうか。

Qlogの微分を教えてください。

logの微分を教えてください。
「^」とかあっても、よくわからないので、できれば、画像で><
今月15日の定期試験に向けて勉強していますが、答えがないので、わかりません。
そんな問題があと20題ほど。
答えだけでも結構です。解答プロセスはなんとか勉強しますが、
今は自力で自信のある解答を導くことができません。

どうぞお願いいたしますm(xx)m

Aベストアンサー

答えだけでいいならば、分母からlogeを取り除けば正解です。

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

QExcel関数式の逆関数式を教えて下さい。

ExcelでLogを使った関数式を作ったのですが
その式の逆関数で答えを求めるには、どんな関数式
をあてはめれば良いか判らなくなってきました。

式 log(セル値/1)

セル値は任意で変化したものを入力します。

上記の式の逆関数、電卓では10のx乗に該当する
Excelの関数式を何方か教えて頂けませんか?

お願いします。

Aベストアンサー

10のA1乗は、

=POWER(10,A1)
=10^A1

いずれかです。


このQ&Aを見た人がよく見るQ&A