中小企業の働き方改革をサポート>>

子供に質問されて、正確な回答が答えられません

問題:ax=2a をxについて解く
私の考えた回答:a≠0のとき、x=2
           a=0 のとき、xは全ての数

子供の疑問:「全ての数」って、複素数も含むのかな?それとも実数だけかな?
        もし、複素数も答えになるのなら、複素数を含む拡大解釈した「数」が
        存在するの????

ということになっています。このような場合、どのように答えるのが一番いいでしょうか?
ちなみに、子供は高校3年生です。

        
        ついても、成り立つのではないのか?

A 回答 (3件)

「複素数を含む拡大解釈した数」というのは、おそらく四元数や八元数などのことをおっしゃっているのだと思います。


しかし実は、複素数係数の多項式の根は複素数になり、新しい数を導入する必要がない、という定理があります。
(これを複素数体は代数閉であるといいます。)
このことから方程式の解の範囲は(特に複素数履修後の高3生であれば)複素数全体とするのがおそらく自然です。
ただ複素数履修前の状態(例えば中学生)を出題者が意識しているのであれば、実数の範囲での答えを要求しても間違いとは言い切れません。
    • good
    • 0
この回答へのお礼

回答ありがとうございました。

複素数の世界より広い世界として、四元数や八元数という世界が広がっているのですね。
勉強になります。
子供は複素数を履修後なので、出題者の意図を考えると、回答としては、複素数全体が
正解ですよね。
ただ、子供にはさらに数学に興味をもってもらたいので、「四元数や八元数という世界も
あるみたいだから、調べてみたら」とアドバイスをしたいと思います。

ご回答ありがとうございました。

お礼日時:2011/07/26 22:37

ax=2xを式変形すると



a(x-2)=0

にもなりますね。
a=0の場合、(x-2)がどのような値をとっても、aとの掛け算の商は0になります。

0との掛け算は実数だろうと複素数だろうと、そこにその数は存在していないということなので。


「全ての数」についてでしたね。
この場合、実数・複素数を含む全ての数と回答するしかないと思います。
もし専門の方がいたら、回答をお願いしたいです。(>_<)


拡大解釈した「数」の世界は無限に広がっているので、本当に気になるのなら大学の数学科に進むことをお勧めします。
    • good
    • 0
この回答へのお礼

回答ありがとうございました。

「a=0の場合、(x-2)がどのような値をとっても、aとの掛け算の商は0になります。
0との掛け算は実数だろうと複素数だろうと、そこにその数は存在していないということなので。」
⇒実数でも複素数でも0との掛け算は0と解釈していいということですよね。

拡大した解釈した「数」の世界は無限に広がっているのですね。
少し興味がわいてきました。数学の世界も奥が深いのですね。

また、機会があったら、がんばって勉強してみます。
ご回答ありがとうございました

お礼日時:2011/07/26 22:26

>「全ての数」って、複素数も含むのかな?それとも実数だけかな?



実数の範囲で考えるか複素数の範囲で考えるかは

(1)問題に指定されている。

(2)問題によっておのずから明らか

のいずれかです。

(2)たとえばxy平面において直線y=ax,y=2aの交点を考える場合は実数に限られます。


>もし、複素数も答えになるのなら、複素数を含む拡大解釈した「数」が

        存在するの????


意味不明です。

”複素数を含む拡大解釈した「数」”を定義してください。
    • good
    • 0
この回答へのお礼

回答ありがとうございました。

問題自体には実数・虚数・もしくはそれ以外の数学的な「数」の指定はなかったです。
また問題自体は質問のとおりの内容以外はなにもない(実数のxy平面上で・・・などの指定)
ので、この問題からだけでは判断できなかったです。


”複素数を含む拡大解釈した「数」”を定義してください。
⇒この点につきましては、
  正数は整数に包含され
  整数は実数に包含され
  実数は複素数に包含されるように、複素数を包含する「何か」がある(=拡大解釈)
  のではという思いつきで、そんな数があるなら、それも答えになるのかな?
  というのが質問の主旨でした。
  わかりずらい質問で申し訳ありませんでした。

問題の背景がないなかで、回答いただきありがとうございました。
参考にさせていただきます。

お礼日時:2011/07/26 22:16

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


人気Q&Aランキング