今日質問したのですが問題を書くのを落としてしまったのでもう一度質問させていただきます。
解答でa=0の時の場合として、xはすべての実数となっていたのですが、すべての数(虚数
も含む)ではいけないのでしょうか、虚数の説明でa+biでb=0のとき実数とあらわすとあったので
bxi=0と思ったのですが違いますか。虚数に0をかけたら0にならないのでしょうか?今高1で虚数は自分で少し勉強したばかりで深くはわかりませんが、虚数に0をかけても0にならないことが事実なら今の時点ではいいのですが、よろしくおねがいします。
No.2ベストアンサー
- 回答日時:
とても良いポイントに気付かれたと思います。
結論から言えば「すべての数」が正解です。
虚数(複素数)に0を掛けると0になります。
a=0のとき、xがどんな複素数でもaxは0になる。0は実数であり、実数同士なら"≦"という大小比較ができる。すると、「任意の複素数xは、a=0のとき、不等式ax≦3aを満たす」は正しい。
(実は、複素数に限らず、まだご存じないであろう(というか大抵の人には一生無縁の)他の数もいろいろあって、それらもこの意味で「a=0のとき、不等式ax≦3aを満たす」んです。すると「(これら他の数も含めて)すべての数」という答案は大正解ですね。)
しかし第二の、別の意見もあり得ます。すなわち、「xに複素数を代入した場合、”ax”とは複素数同士の掛け算を意味する。なのでaも複素数だと思わねばならない。その掛け算の結果得られるのは複素数の0(実部と虚部がどっちも0の複素数)である。これは複素数なんだから、"≦"という比較がそもそもできない。比較できないのであれば、ax≦3aは成立たない」。これももっともな意見で、こちらに従えば、xは複素数であってはならず、「全ての実数」が正解になる。
これに対して、第一の意見からの反論は、「実数とは虚部が0の複素数のことである。また、"≦"という大小比較ができるのは実数(つまり虚部が0の複素数)に限られる。『複素数の0』は虚部が0の複素数であるから実数であり、大小比較ができる。だから任意の複素数xは、a=0のとき、不等式ax≦3aを満たす」というもので、これまた実にごもっともである。
これに対して、第二の意見からの反論は、「複素数の実部も虚部も実数ではないか。もし『実数とは虚部が0の複素数だ』というのなら、複素数の実部も虚部もどちらも『虚部が0の複素数』ということになる。つまり複素数は複素数で出来ているという堂々巡りになってしまうではないか。だからそんな説明はおかしい」というもの。いやはや、それもまたごもっとも。
では本格的な数学ではどうなっているかというと(難しい話になりますが)、まず実数というものをこしらえる。次に実数を2つ組み合わせて複素数を作る(ここまでは第二の意見と同じです)。しかしこれだけでは終わらず、次に、虚部が0の複素数(複素数を作る時に使った実数とは当然別もの)を改めて実数と同一視して良い(初めに考えた実数と全く同じ性質を持つ)ということを証明する(これを「実数を複素数に埋め込む」と言います。これで結局、第一の意見と同じになる)。こうして話が堂々巡りにならないようにしているんです。
このような仕掛けの結果、実数だけを扱っているうちは、その実数とは「まず実数というものをこしらえ」た時の実数(第二の意見)なのか、それとも虚部が0の複素数(第一の意見)なのか、という区別は不要で、どちらで考えても(どちらも全く同じ性質を持つから)全く同じ結果になるんです。
つまり、あらかじめ変数の変域(変数がどういう範囲の値を取りうるか)が決めてありさえすれば、複素数の0と実数の0(さらに言えば、有理数の0、整数の0)を同じものだと思って扱っても何のトラブルもない(どちらで考えても全く同じ結果になる)のです。
けれども、この問いの場合には肝心のxやaの変域が書いてなかったばっかりに、こんなややこしい話になってしまった。これはもう、変域を「a, xは実数である」ときちんと書いておかなかった出題者の手落ちです。
「安易に『両辺をaで割って…』とやらかしちゃいけないよ」という問いなのだから、a=0の時にどうなるかを十分吟味した上で出題すべきなのは当然です。「まだ授業で複素数を教えていないんだから、実数の話に決まってる」というのは言い訳にならないでしょう。(たとえば入試問題なら、こういう手抜き問題が出る心配はまずないと思いますが。)
いろんな観点から解説をしていただいて複素数や実数の世界が少しわかったような気がします。まだ自分の今の知識ではわからないところもありますが糸口は十分つかめたような気がします。これからまた勉強していきたいと思います。ありがとうございました。
No.1
- 回答日時:
>すべての数(虚数も含む)ではいけないのでしょうか、
だめ.
虚数,正確には複素数には大小関係はない
大小関係があるのは複素数の一部分である
実数だけ.
したがって,不等式を考える段階で
実数だけを考えていることになる.
#一応,無駄な突っ込み防止のために
#選択公理を前提とすれば整列可能定理で順序がはいるけど
#普通はそんなものは考えない.
ついでにいえば
複素数に0をかければ0になります.
これは,複素数での積の定義を考えれば自明です.
=========
もともとの問題そのものは・・・お約束の基礎的な引っ掛け問題ですな.
基礎事項の確認と文字の扱いに手頃です
類題:
(1) xについての二次方程式 ax^2+bx+c=0 をとけ
(2) xについての方程式 ax^2+bx+c=0 をとけ
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 『0=0・a+0・bi?』 5 2022/09/05 00:12
- 哲学 《わたし》は 基本として数では《一》だと思われるが ひょっとしたら 複素数として成り立っているか? 2 2023/03/16 00:17
- 哲学 《うそ》の問題――《虚数》にたとえられるか? 15 2023/05/10 22:23
- 工学 制御工学の問題です。 5 2022/12/29 18:35
- 数学 ピーマン予想。突如として数学史上に名を残すこととなる複素関数ピーマンゼータ関数が発見されたとします。 1 2022/05/30 20:49
- 数学 『因数に分解するということ』 9 2022/06/27 06:14
- 哲学 ウソの問題 理論編:《虚数人間》の成り立ちについて 2 2022/05/23 22:25
- 哲学 ウソの問題:ウソを平気でつきつづけるようになれるわけ 10 2022/05/22 22:07
- 数学 関数のグラフ 5 2023/07/20 23:57
- 物理学 Lagrangian や Hamiltonianの妥当性評価 1 2022/08/30 13:13
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
絶対値のついた2次不等式
-
数1 二次不等式の問題について...
-
不等式の問題
-
0≦a≦1という不等式を逆数である...
-
高校数学。楕円や双曲線の不等...
-
点(x、y)が、不等式(x-3)^2+(y-...
-
三角形の内部及び周を表す不等式
-
次の2次不等式を解けという問...
-
85番: 不等式a(x^2)+(y^2)+a(z^...
-
高校数学内で、ある不等式にΣを...
-
高1 数1 2次不等式 二次方程式 ...
-
不等式について
-
1次不等式の応用問題で、写真の...
-
不等式で辺辺を足すのは良いの...
-
数学 なんで不等式の計算のとき...
-
すべての実数に対して成り⽴つ...
-
ド忘れしたんですけど、2分の1...
-
1-分数の解き方
-
小学校4年生の算数の教科書で...
-
SQL文のwhere条件文で使う <> ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
三角関数です。教えてください...
-
計算技術検定2級の方程式と不等...
-
高1 数1 2次不等式 二次方程式 ...
-
0≦a≦1という不等式を逆数である...
-
二次不等式x^2-(2a+1)x+a^2+a<0...
-
指数対数
-
不等式で辺辺を足すのは良いの...
-
次の2時不等式を解け 4x²-12x+...
-
数学の問題です。 cosx≧√3sinx ...
-
次の不等式を同時に満たす整数...
-
三角関数の問題なのですが、 0≦...
-
アプリオリ評価について
-
数学の質問です。
-
不等式の証明
-
不等式の問題
-
難題集から 最大と最小
-
不等式の証明
-
4つの袋AからDがあり、袋の中...
-
三角形の内部及び周を表す不等式
-
数学 なんで不等式の計算のとき...
おすすめ情報