
長方形の板(長辺Lx短辺M)の4隅を支持して、任意点(板の中央は除きます)に、
垂直集中荷重Wが作用します。
このとき長方形の板の4隅に生じる反力を求める方法を教えてください。
(板の重量は無視、板に生じる曲げモーメント、たわみなどは一切考えません。
ただ単純に、作用があれば、反作用があるだろうということだけです。)
4っつの方程式が必要かと思います。
1.Σ垂直方向の力=0
2.Σ原点まわりのモーメント=0 (荷重点を原点とします)
これで3っつの方程式は得ることができると思います。
あと一つの方程式はどうすれば宜しいのでしょうか。
それとも別の考え方をするのでしょうか。
宜しくお願いいたします。
No.2ベストアンサー
- 回答日時:
厳密に言うと、これは3次元での物体の釣り合い問題になるので、支点反力は3成分を持ち、3×4=12個の未知数を定める必要があります。
一方釣り合い方程式は、1.Σ垂直方向,Σ水平縦方向,Σ水平横方向の力=0で、3つの式
2.Σ原点まわりのモーメント=0 は、ベクトル方程式として正味3つの式
となり、12-6=6本の式が足りなくなります。
しかし反力の水平8成分は明らかに0なので、これらを条件として追加すると、6+8=14個の条件式になり、今度は条件過多で解けなくなるように見えますが、水平8成分=0を追加すると、Σ水平縦方向の力=0,Σ水平横方向の力=0の2条件が、0=0で無意味になり、Σ原点まわりのモーメント=0の垂直成分も自明に0で、有効な条件が3個減ります。
結局未知数12個に対して、14-3=11個の条件しかなく、あと一つ方程式が足りないというのが、この問題の正確な状況です。
物体全体の釣り合い条件+付加条件で反力が決まらない問題を、不静定問題と言います。逆に静定問題の場合は、支点と着力点の位置と荷重が同じなら、板が(物体が)どんな形状であっても、どんな変形を起こそうと、反力は同じになります。
不静定問題では、物体の形や、変形に対する材料定数を考慮して、つまり物体の変形挙動まで考慮して初めて、反力が決まります。このケースだとふつうは、変形挙動の計算のために、薄板の曲げ理論を使いますが、デザインデータブックなどには、その結果が、典型的な荷重状態については載っています。
No.3
- 回答日時:
#2です。
>(板の重量は無視、板に生じる曲げモーメント、たわみなどは一切考えません。ただ単純に、作用があれば、反作用があるだろうということだけです。)
・・・という事でしたか。そうであっても、#2で述べたような手順は省略できないでしょう。この場合は、有限の板剛度Dで計算しておいて、D→∞とした極限解として得られます。
いずれにしろ、釣り合い条件だけでは、反力は一意に決められません。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
L型の金具の根元にかかるモーメ...
-
角パイ・単管パイプの耐荷重を...
-
断面形状が変化する梁の撓み量
-
最大曲げモーメント公式 Mmax=...
-
ブラジウスの解って何ですか?
-
コの字形の梁のたわみ(材料力...
-
図三見てください 図三のように...
-
強度計算について
-
4点支持曲げモーメント
-
材力 断面が変化するはり
-
曲げモーメントはなぜ釣り合う...
-
慣性モーメント,回転半径とは?
-
鋼材のたわみ
-
固定モーメントとは
-
合モーメントについての質問
-
モーメントの問題。
-
2つの分子の双極子モーメント...
-
図のような単純梁の最大のモー...
-
PDF-XChange Viewerで、回転し...
-
ベクトル関数の概略を図示せよ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
角パイ・単管パイプの耐荷重を...
-
L型の金具の根元にかかるモーメ...
-
断面形状が変化する梁の撓み量
-
最大曲げモーメント公式 Mmax=...
-
4点支持曲げモーメント
-
ブラジウスの解って何ですか?
-
4支点の反力の求め方
-
2つの分子の双極子モーメント...
-
図三見てください 図三のように...
-
強度計算について
-
モーメントの問題。
-
構造力学:モールの定理から導...
-
平面梁の支持点に掛かる荷重の...
-
材力 断面が変化するはり
-
慣性モーメント,回転半径とは?
-
構造力学、連続梁の計算を教え...
-
モーメントとトルクの違い
-
片持ち梁に作用するトルク
-
材料力学のはりについて質問で...
-
物理モーメントの質問
おすすめ情報