出産前後の痔にはご注意!

現在、図のような等分布荷重を支える連続梁、Rw1とRw2の反力の算出ができずに困っております。

このような梁の反力の計算をするにはどのようにしたら良いのでしょうか?

自力でなんとか理解しようと、色々と調べては見たのですが、いよいよ困ってしまい、ぜひ皆様方のお知恵を拝借出来ればと思い質問させて頂きました。

「連続梁の反力の算出がうまく出来ません」の質問画像

A 回答 (2件)

解法としては、3連モーメントを使う方法と、弾性方程式(1の回答者の人の方法)を使う方法があります。


等分布荷重の3点支持ですから、弾性方程式で解きます。
質問文の梁を、両端2点支持の等分布荷重の単純梁と両端2点支持の下からの集中荷重の単純梁に分解します。
中間支持点でのたわみは0ですから、等分布荷重の中間支持点のたわみと逆方向のたわみが生ずる集中荷重を求めれば、中間支持点の反力が求められます。
梁のE、Iは同じですから、EI=Jとすると、等分布荷重の中間支持点のたわみδc1=5.33×34.25×(81.35^3ー2×81.35×34.25^2+34.25^3)/24J、集中荷重の中間支持点のたわみδc2=ーRw2×34.25^2×47.1^2/(3J×81.35)となります。
δc1+δc2=0より、Rw2=δc1×3J×81.35/(34.25^2×47.1^2)=5.33×81.35×(81.35^3ー2×81.35×34.25^2+34.25^3)/(8×34.25×47.1^2)≒276.5kN
Rw1は、両方の梁のモーメントのつり合いから求められるので、等分布荷重の場合は、5.33×81.35/2≒216.8kN、集中荷重の場合は、ー276.5×47.1/81.35≒ー160.1kN、したがってRw1=216.8-160.1=56.7kN
Rw3も同様に、Rw3=216.8-276.5×34.25/81.35≒100.4kN
Rw1+Rw2+Rw3=56.7+276.5+100.4=433.6kN→81.35×5.33≒433.6kN
    • good
    • 2

解放の理解ではなく答えだけで良いのなら。



1.まずRw2の地点の支持を無視し、Rw2点の等分布荷重での撓みを求める。
2.分布荷重無しで、Rw2点の撓みが、1.で求めた撓みと等しくなる集中荷重を求める。
3.Rw1、Rw3の反力を2.の計算の反力を引く。Rw2は2.の荷重。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q3点集中荷重の最大曲げ応力の計算式を教えてください

足場架設用の仮設鋼台の強度計算をしているのですが、最大曲げ応力の計算の仕方がわかりません。

P=1,169kg

3点集中荷重の計算の公式は、A=L/4の時

Mmax=PL/2

この公式は今回のケースでも当てはまるのでしょうか?




強度計算、材料力学については全くの素人で、毎日参考文献を調べながら計算しています。

どなたかお力添えを宜しくお願い致します。

Aベストアンサー

まず、応力図(Q図、M図)を書きます。
Q図は、左側から反力と荷重を力の矢印の通りに上下させて描きます。
M図は、単純ばりに集中荷重が作用した場合は、ピンと張ったゴムひもが荷重に押された形を想像すると良いでしょう。
ここで、Q図とM図は連動しており、ある点のMの値は、その点までのQ図の面積を計算することで求められます。
このあたりは、「計算の基本から学ぶ 建築構造力学」および「ズバッと解ける!建築構造力学問題集220」(いずれもち上田耕作・著 オーム社)に分かり易く解説されています。

>3点集中荷重の計算の公式は、A=L/4の時
>Mmax=PL/2
>この公式は今回のケースでも当てはまるのでしょうか?

応力図(1)より、スパン中央でMmaxは生じるので、Q図の面積を計算すると、
Mmax=3P/2×L/2-P×L/4=PL/2となります。
しかしながら、これは公式とはいうほどのものではありませんし、
この場合は、等間隔(L/4)に作用していないので使えません。

ここでは、応力図(2)によって、Q図の面積からMmaxを求めます。
反力V=3×1169/2=1753.5
Mmax=1753.5×2.710-1169×1.499=2999.7 kg・m
∴Mmax=2999.7 kg・m

これまで、計算はkgとmで進めましたが、例えば、建築の場合、許容応力度の単位に合わせて、Nとmmで進めるのが良いでしょう。なお、1kgは約9.8Nとなります。

参考URL:http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-20856-0

まず、応力図(Q図、M図)を書きます。
Q図は、左側から反力と荷重を力の矢印の通りに上下させて描きます。
M図は、単純ばりに集中荷重が作用した場合は、ピンと張ったゴムひもが荷重に押された形を想像すると良いでしょう。
ここで、Q図とM図は連動しており、ある点のMの値は、その点までのQ図の面積を計算することで求められます。
このあたりは、「計算の基本から学ぶ 建築構造力学」および「ズバッと解ける!建築構造力学問題集220」(いずれもち上田耕作・著 オーム社)に分かり易く解説されて...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q台形の重心を求めるには

上底a 下底b 高さ h とした場合、台形の重心をもとめる公式は、 (2a+b)/(a+b)*h/3 でよろしいでしょうか?

Aベストアンサー

計算してみました。
面積
 A=(a+b)h/2
下底周りの断面一次モーメント
 S=a・h^2/2 + (b-a)h^2/6
  =h^2(2a+b)/6

重心位置、S/Aですから、
 G=(2a+b)/(a+b) ・ h/3

合ってますね。

Qコンクリートの単位容積重量はいくらぐらい?

一般的なコンクリート塊の単位容積重量はおよそどれぐらいですか。
できたら、Kg/立方mで教えてください。

Aベストアンサー

コンクリートの単位容積重量(正式には単位容積質量)はコンクリート中の
砂、砂利、の質量とコンクリートの乾燥具合によって変わってきます。

現在日本で使われてるセメント、砂、砂利の比重から考えて2300~2400Kg/立方m
と考えて良いでしょう。

特殊な用途があれば軽いコンクリート、重いコンクリートも作ることが出来ます。
元生コンクリート技術に従事していました。

Q引張応力とせん断応力の合成応力?

物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?
引張応力とせん断応力を合成した応力が存在し,それが許容応力以下かを調べる必要があるのでしょうか?
その場合は,計算方法も教えて欲しいです.

Aベストアンサー

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する」は同義語ではありません。

一般的な許容応力法の検討では、

3次元物体には、3方向(x、y、z)の材軸が存在します。この物体に3方向の軸力と剪断力が同時に作用する場合、この物体に生じる最大応力は、
σmax=√(σx^2+σy^2+σz^2+3τ^2)
で求めることができます。

もし、同時に剪断力を受ける物体が細長い物体で、1方向(x方向)にのみ引張りが生じているならば、
σy=σz=0
となって、
σmax=√(σx^2+3τ^2)
で計算することができます。この最大応力が許容応力を超えないことを確かめます。

多少、簡単に書きすぎたかもしれませんが、基本的な流れとしては、合っていると思います。
また、破壊についても基本的な考え方は同じですが、式の表現方法が多少異なり、より詳細な表現がされ、比較の対象が「許容応力」ではなく「降伏応力」になります。

詳しくは、応力テンソル、ミーゼス、トレスカなどのキーワードをgooなどで検索すると詳しい説明のあるサイトを見ることができます。

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する...続きを読む

Q最大曲げモーメント公式 Mmax=wl²/8 

(左支持荷重×距離)-(左半分荷重×左半分荷重重心)
(P/2×L/2)-(P/2×L/4)
=PL/4-PL/8
=PL/8

どうして(左支持荷重×距離)から(左半分荷重×左半分荷重重心)を引くのか分かりません。教えてください。

Aベストアンサー

まず、この問題は図1のようにスパンLの単純ばりに等分布荷重wが作用しているときの最大曲げモーメントMmaxを求めるものだと思います。

応力の前にまず反力を求めますが、反力を求めるには、等分布荷重wを集中荷重Pに直してスパン中央に作用させます。これが図2となり、集中荷重Pの大きさはwLとなります。また、反力はPの半分ずつでP/2となります。

最大曲げモーメントは、スパン中央で生じるので、スパン中央で切断して考えますが、図2の反力を求める図を切断して考えると質問者さんのような疑問が生じるのだと思います。

最大曲げモーメントを求めるには、図1の等分布荷重を作用している状態でスパン中央で切断して考えます。これが図3となり等分布荷重が作用している状態となります。

切断した部分の等分布荷重wを集中荷重に置き換えると、図4のようにP/2となり、スパンの半分の半分の位置、つまりL/4の位置に作用することとなります。ここで、スパン中央を中心としてモーメントのつりあいを考えると、質問者さんの式が導き出されます。

Mmax=P/2×L/2-P/2×L/4
=PL/4-PL/8
=PL/8

なお、P=wLより、最大曲げモーメントの公式 Mmax=wL^2/8 となります。

「計算の基本から学ぶ建築構造力学」(著者 上田耕作、オーム社)、
「ズバッと解ける!建築構造力学問題集220」(著者 上田耕作、オーム社)を参考にしました。

参考URL:http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-20856-0

まず、この問題は図1のようにスパンLの単純ばりに等分布荷重wが作用しているときの最大曲げモーメントMmaxを求めるものだと思います。

応力の前にまず反力を求めますが、反力を求めるには、等分布荷重wを集中荷重Pに直してスパン中央に作用させます。これが図2となり、集中荷重Pの大きさはwLとなります。また、反力はPの半分ずつでP/2となります。

最大曲げモーメントは、スパン中央で生じるので、スパン中央で切断して考えますが、図2の反力を求める図を切断して考えると質問者さんのような疑問...続きを読む

Q鋼板の曲げ応力について

初心者です

壁に厚さ32mm 幅150mm 長さ515 の鋼板があります
壁に片方を付け、反対側に10knの力をかけるとゆう作業なのですが、
10knでもつのか、またどの位の力までもつのか知りたいのですが算定のしかたが分かりません

宜しくお願いします

Aベストアンサー

図のような荷重状態を想定しました。
また、鋼材の材質が指定されてないので、一般的なSS400(一般構造用鋼材)を想定します。
SS400の許容曲げ応力度fb=156N/mm2、また、許容せん断力fs=90.4N/mm2とします。
なお、計算はNとmmで進めます。
(1)曲げに対する検討
最大曲げモーメントM=PL=10,000×515=5,150,000N・mm
断面係数Z=bh2/6=150×32×32/6=25,600mm3
曲げ応力度σb=M/Z=5,150,000/25,600=201N/mm2>fb=156N/mm2
∴許容曲げ応力度を超えているので安全とはいえません。(もたないです)
では、何kNまでならOKかと逆算すると,
P×515/25,600=156
P=7,754N
∴7.7kNまでなら計算上はOKとなります。
このとき,せん断に対しては,
せん断応力度τ=P/A=7,700/150×32=1.6N/mm2≦fs=90.4N/mm2
∴せん断に対しても安全といえます。
(注)SS400の材料自体の計算例を示しましたが、これ以上に壁に対する固定方法のチェックもお忘れなく。

参考文献:計算の基本から学ぶ 建築構造力学 上田耕作 オーム社

図のような荷重状態を想定しました。
また、鋼材の材質が指定されてないので、一般的なSS400(一般構造用鋼材)を想定します。
SS400の許容曲げ応力度fb=156N/mm2、また、許容せん断力fs=90.4N/mm2とします。
なお、計算はNとmmで進めます。
(1)曲げに対する検討
最大曲げモーメントM=PL=10,000×515=5,150,000N・mm
断面係数Z=bh2/6=150×32×32/6=25,600mm3
曲げ応力度σb=M/Z=5,150,000/25,60...続きを読む

Q2点集中荷重の計算について教えてください。

2点集中荷重の計算について教えてください。
片側がピン支持、もう片方が固定支持の梁に
2点集中荷重P1、P2があります。
P1、P2ともそれぞれの端部からの距離は同じです。
この場合の各点の曲げモーメント、最大曲げモーメント
せん断力の計算方法がわかりません。
宜しくお願い致します。

Aベストアンサー

次のページに1点荷重の公式がありますから、
http://www.geocities.jp/iamvocu/Technology/kousiki/kousiki-kouzouhari/kousikikouzouhari.html

P1,P2 それぞれについてM,Q,をもとめて足し算すればよいです。

Q鋼材のせん断強度√3の意味について

鋼材のせん断強度だけF/1.5√3と
√3が係数として掛かってます。
他の、圧縮・引張・曲げには√3の係数
はかかりません。
なぜ、せん断だけ√3の係数が掛かるのか
分かる方教えて頂けませんか?

Aベストアンサー

基本的には、yu-foさんの回答3で良いと思います。

物体の多軸応力に対する降伏条件の説の中で、von Mises の剪断ひずみエネルギー説があります。
3次元物体の主応力をσ1、σ2、σ3としたときの降伏条件は、
単軸引張に対する降伏応力度をσy、とすると、
剪断応力度は主応力の差に比例するので、
σy^2=1/2・((σ1-σ2)^2+(σ1-σ3)^2+(σ2-σ)^2))・・・(1)
であらわすことが出来ます。

ここで、鉄骨造に用いる鋼材はほとんど板材のの組み合わせなので、2次元つまり、平面応力とみなすことができ、
σ3=0・・・(2)
とする事ができます。
また、純剪断状態を考慮すれば、主応力が全て剪断であると考えられるので、
σ1=(-σ2)=τ・・・(3)
と置けます。

(2),(3)を(1)に代入して計算すると、
σy^2=3τ^2・・・(4)
となります。

(4)を変形して
τ=σy/(√3)
となります。

つまり、√3は、vonMisesの剪断ひずみエネルギー説に基づいた降伏理論によって導かれた数値です。

基本的には、yu-foさんの回答3で良いと思います。

物体の多軸応力に対する降伏条件の説の中で、von Mises の剪断ひずみエネルギー説があります。
3次元物体の主応力をσ1、σ2、σ3としたときの降伏条件は、
単軸引張に対する降伏応力度をσy、とすると、
剪断応力度は主応力の差に比例するので、
σy^2=1/2・((σ1-σ2)^2+(σ1-σ3)^2+(σ2-σ)^2))・・・(1)
であらわすことが出来ます。

ここで、鉄骨造に用いる鋼材はほとんど板材のの組み合わせなので、2次元つまり、平面応力とみなすことができ、
σ3=...続きを読む

Q両端固定はりのせん断力と曲げモーメント

図のような固定はりのせん断力、曲げモーメントを求め、たわみ角、たわみ、SFD、BMDを求めたいです。
重ね合わせ法で解こうと思いましたが、荷重がどちらか片方だけ作用している時のせん断力、曲げモーメントをどのように考えるのかわかりません。

Aベストアンサー

 C点またはD点の荷重効果を別々に計算して足せば良い、とわかっているなら、次のURLで答えは出ます(^^)。

  http://www.geocities.jp/iamvocu/Technology/kousiki/kousiki-kouzouhari/kousikikouzouhari-04-01.html

 以下は、どうしてもという事であれば、という内容です(^^;)。


 構造力学の一般的手順では、最初に全体系の力の釣り合いから反力を求め、後は反力から部材力をたどって行って、SFDやBMDを計算します。しかし両端固定梁の場合、力の釣り合いだけからは反力を全部求めきれない。問題図で水平力が無いのは明らかですが固定端なので、左右でそれぞれモーメント反力と鉛直反力が現れ、全部で4個になる。ところが力の釣り合い方程式は、水平力が片付いているので実質2本しかない。未知数が2個余る。こんな状況だと思います。

 余り2個の反力を計算する代表的な方法は、4つあります。
  1)曲げを受ける梁の微分方程式
  2)カスティアノの定理
  3)仮想働の原理
  4)たわみ角法

 4)は応用性に乏しいので、ここでは省略します。それでまず1)です。


1))曲げを受ける梁の微分方程式
 曲げを受ける梁の微分方程式は、

  EI・(d^4w/dx^4)=q(x)    (1)

です。xはたいてい梁の左端を0にしたりします。Eはヤング率,Iは断面2次モーメントです。q(x)は横方向の分布中間荷重です。ここでは問題図のC点の荷重についてのみ考えます。そうするとAC間,CB間には中間荷重がないので(q(x)=0)、(1)からそれぞれ、

  w1(x)=A1・x^3+B1・x^2+C1・x+D1
  w2(x)=A2・x^3+B2・x^2+C2・x+D2

が得られます。w1はAC間の梁の鉛直方向の変位曲線,w2はCB間の変位曲線を表し、A1,B1,C1,D1とA2,B2,C2,D2は、それぞれに対する積分定数で未知です(つまりこれら8個が未知数です)。

 たわみ角はdw/dxで、BMDはEI・d^2w/dx^2で、SFDは-EI・d^3w/dx^3では求められるので、8個が未知数に対する条件は、

  左端固定条件
   w1(0)=0                     :Aで変位0
   dw1/dx(0)=0                  :Aでたわみ角0

  C点での接続条件
   w1(L/3)=w2(0)                 :Cで変位連続
   dw1/dx(L/3)=dw1/dx(0)           :Cでたわみ角連続
   d^2w1/dx(L/3)=d^2w2/dx(0)         :Cで曲げモーメント連続
   -d^3w1/dx(L/3)-W=-d^3w2/dx(0)   :Cでのせん断力の釣り合い

  右端固定条件
   w2(2L/3)=0                   :Bで変位0
   dw2/dx(2L/3)=0                :Bでたわみ角0

と8個になり、頑張って解けば、A1,B1,C1,D1とA2,B2,C2,D2は全部求まります。求まれば、BMDはEI・d^2w/dx^2で,SFDは-EI・d^3w/dx^3で、・・・です(^^;)。


 次に2)は後にして3)仮想働の原理ですが、この辺で力突きました。

 明日また回答するかも知れませんが、1)~4)のいずれを使おうと、計算は大変です。最初のURLをお奨めします(^^;)。

 C点またはD点の荷重効果を別々に計算して足せば良い、とわかっているなら、次のURLで答えは出ます(^^)。

  http://www.geocities.jp/iamvocu/Technology/kousiki/kousiki-kouzouhari/kousikikouzouhari-04-01.html

 以下は、どうしてもという事であれば、という内容です(^^;)。


 構造力学の一般的手順では、最初に全体系の力の釣り合いから反力を求め、後は反力から部材力をたどって行って、SFDやBMDを計算します。しかし両端固定梁の場合、力の釣り合いだけからは反力を全部求めきれない。問題図で水...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング