
No.5ベストアンサー
- 回答日時:
煙突の「内側」(と上面の縁)も計算に入れるとすれば,他の方もご指摘の通り,
厚みが必要になりますが,「外側」の面積だけわかれば後は簡単なので外側の面
積について書いてみます.
文章だけではわかりにくいと思いますので,図を書きながら見てくださいね(^ ^)
これは,大きな円錐の先のとがった方の一部(これもまた円錐ですね)を切り取
ったものですから,大きい円錐の側面積から小さい円錐の側面積を差し引いたも
のになりますね.(ただし,煙突なので底部の面積が含まれないことに注意した
ほうがいいですね
ます,大きな円錐を考えます.円錐の側面積は,それを切り開いた扇形の面積を計
算すれば求められます.
今,扇形の円弧の長さLは煙突下部の円の円周に等しいですから,円周率πを用いて
L = 2*π*(6/2) = 6π
一方,扇形の半径をRとすると(Rは計算しなくてはならないのですが,面倒なので
最後にします)半径Rの円周(つまり,扇形は円の一部ですが,その扇形の元の円の
円周)Mと面積Sは
M = 2πR
S = πR^2 (^2は2乗の意)
元の円周が2πRで,その一部である扇形の円周が6πなのですから,扇形の面積Tは
T = S*(L/M) = 3πR
次に,小さい円錐を考えます(基本的に上と同じように考えていきます).
展開した扇形は,煙突上部の円の円周に等しいので
L' = 2*π*(3/2) = 3π
扇形の半径は,大きい扇形の半分,すなわちR/2になります.なぜなら,大きい扇
形と小さい扇形は相似で,小さい扇形底部の直径が大きい扇形のそれの半分(つま
り,煙突上部の直径が煙突下部の直径の半分になっているからですしたがって,
この扇形の元になっている円の円周と面積は
M' = 2π(R/2) = πR
S' = π(R/2)^2 = (πR^2)/4
上と同様に考えて,扇形の面積T'は,
T' = S'*(L'/M') = 3πR/4
したがって,求める面積は
T-T' = 3πR-3πR/4 = 9πR/4
ここで,Rを計算します.
大きな円錐の高さは小さな円錐の高さの倍(上で述べた大小扇形の半径と同じよう
に考えます)ですから,120 mです.円錐を真横から見ると2等辺三角形に見えます
がそれを縦に半分に切った直角三角形を考えると,底辺が3m(煙突底部の直径の半
分ですネ)高さが120 mですから,ピタゴラスの定理により,斜辺は
√(3^2+120^2)=√14409
で,これが求める扇形の半径Rになります
したがって,求める面積は,
9π√14409/4
だいたい,848 m^2
になるのではないでしょうか?ざっとやったのでミスがあるかもしれませんが....
No.7
- 回答日時:
NO4のbrogieです。
円錐の面積のところで、円錐の体積の公式と間違って書きました。皆様に、お詫び申し上げます。S = A*h/3 は体積でした。
回答は、皆様にお任せいたしたす。(冷や汗たらたら)
No.6
- 回答日時:
私なら、こうしたい。
基本的には、No.1 yanron の解法です。■ 求める面積は、等幅図形(=広義台形)なので台形の面積が使えます。
上底=3×π
下底=6×π
高さ=√(1.5^2+60^2)=√3602.25
面積=(3×π+6×π)÷2×√3602.25
=4.5×π×√3602.25
≒848.06(m^2)
------------------------------------------------------------------------
No.5 煙突の「内側」(と上面の縁)も計算に入れるとすれば,他の方もご指摘の通り,
厚みが必要になりますが,「外側」の面積だけわかれば後は簡単なので外側の面
積について書いてみます.
■ うまい表現ですね。うまく、質問者を補足しています。あとの解法も優れています。
ただ、親切が過ぎて、長くてかえって分かりにくいような気も少しします。
-------------------------------------------------------------------------
No.4 No3の回答者が書かれているように、展開すると扇型です。
扇型は円錐を途中から切り取り、下側の部分です。
上の半径が3m、下の半径が6m(上の半径の2倍)、高さが60mですから、
これを延長して円錐を作ると、高さも2倍になりますから、60m*2=120mです。
円錐の面積Sは S = A*h/3 ただし、A=円錐の底面積、h=円錐の高さ
■ 上の半径が3m、下の半径が6m、半径でなく直径でしたよ。
円錐の面積Sは S = A*h/3 ただし、A=円錐の底面積、h=円錐の高さ ではなく
円錐の体積Vは V = A*h/3 ただし、A=円錐の底面積、h=円錐の高さ ですね。
----------------------------------------------------------------------------
No.3 つまり、高さ120m底Φ6mの円錐から高さ60m底Φ3mの円錐を
引き、Φ3mとΦ6mの円を足すということですね。
(円錐の表面積の求め方はおわかりでしょう。)
ちなみに台形ではなく、扇形ですね。似てるけど。
回答者:usu-usu
■ Φ3mとΦ6mの円はたさないのでは?
たすならば、「煙突」ではなく、ずばり、「円錐台」の表面積ということになります。
「図形の性質」という観点から見ると、台形と扇形は違う形ですが
「図形の計量」という観点から見ると、三角形(上底が0の台形)、平行四辺形、扇形も
広義の台形と見られます。
--------------------------------------------------------------------
No.2 煙突の厚みは?
無いものとして(つまり紙を丸めたようなものとして)考えるんでしょうか?
回答者:sesame
■ そうでしょうね。
---------------------------------------------------------------------
No.1 円筒を切り開いて台形にして考えては?
回答者:yanron
■ 大変良い考えだと思います。台形というより、等幅図形(=広義台形)といった方が
通りがよかったかも。
No.4
- 回答日時:
No3の回答者が書かれているように、展開すると扇型です。
扇型は円錐を途中から切り取り、下側の部分です。
上の半径が3m、下の半径が6m(上の半径の2倍)、高さが60mですから、これを延長して円錐を作ると、高さも2倍になりますから、60m*2=120mです。
円錐の面積Sは S = A*h/3 ただし、A=円錐の底面積、h=円錐の高さ
高さ120mの円錐の表面積を求めると(A=3.14*6^2、 h=120)
S1 = (3.14*6^2)*120/3
円錐の上の部分の面積を求めると(A=3.14*3^2、 h=60)
S2 = (3.14*3^2)*60/3
となりますから
求める煙突の表面積Sは
S = S1- S2
となります。
計算はご自分でして下さい。
ご成功を祈ります。
No.3
- 回答日時:
つまり、高さ120m底Φ6mの円錐から高さ60m底Φ3mの円錐を
引き、Φ3mとΦ6mの円を足すということですね。
(円錐の表面積の求め方はおわかりでしょう。)
ちなみに台形ではなく、扇形ですね。似てるけど。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
円弧とはどんな形ですか? 画像...
-
DIAMETERという表記があるメジ...
-
エクセルで、重力加速度
-
円錐の展開図面を描きたい
-
ギヤ比とモーター回転数の計算
-
基礎問題精講 数学61番の(2)の...
-
フランジに24この穴明コンパス...
-
扇形の作図の計算方法を教えて...
-
円錐を斜めに切断しても卵型に...
-
弦長から弧長の求め方
-
円周率を何桁まで言える?
-
投影図の描き方
-
円柱の内容積の求め方
-
中心角を求める計算方法を教え...
-
円の半径が2倍になると面積と...
-
弧ABとは?
-
円周率は何桁まで言えますか?
-
3次元空間の軌跡の問題です。
-
おうぎ形の中心角の求め方
-
円周を等分するとはどういうこ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
エクセルで、重力加速度
-
円錐の展開図面を描きたい
-
円周率は何割る何で求まりますか?
-
円弧とはどんな形ですか? 画像...
-
中心角を求める計算方法を教え...
-
円周率をルートすると(平方根)、
-
この図形の名前は...扇形?...
-
一周が360度で2π=360度...
-
弦長から弧長の求め方
-
円周にそったサイン曲線は描け...
-
弧ABとは?
-
フランジに24この穴明コンパス...
-
バケツの展開図
-
扇形の作図の計算方法を教えて...
-
円柱の内容積の求め方
-
ギヤ比とモーター回転数の計算
-
中2●数学で分からない問題があ...
-
円錐の側面積について。 面積を...
-
円の中心の求め方
-
円錐を表す陰関数を教えて下さい。
おすすめ情報