A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
x sin x - cos x = 0 は、無数の解を持ちますが、
Xn の存在範囲を (2nπ,2nπ+π/2) としているので、
2nπ - Xn → 0 という表記に問題は無いでしょう。
lim[n→∞] 2nπ - Xn = 0 と書いても、同じです。
そのような Xn が、任意の n で唯一に定まること
を示した上で、2nπ < Xn から、Xn → ∞ (n → ∞)。
Xn sin Xn - cos Xn = 0 より tan Xn = 1/Xn → 0 (n → ∞)。
これより、tan(2nπ - Xn) → 0 (n → ∞) かつ
-π/2 < 2nπ - Xn < 0 なので、
2nπ - Xn → 0 (n → 0) です。
No.1
- 回答日時:
2nπ-Xn→0(n→∞)
という表記が正しいかはわかりませんが、
「方程式の一般解が πの偶数倍に近づいていくことを示したい。」と解釈しました。
で、もとの方程式を
tan(x)= 1/x
と変形してみればどうですか?
xが大きくなれば、右辺は・・・
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 積分計算を使った漸化式とその極限 4 2023/07/04 15:40
- 数学 極限値とロピタルの定理 3 2023/07/26 12:18
- 数学 位相空間 X において, 点列 {xn} が x∞ に収束しているとき, 集合 {xn; n ∈ N 1 2023/01/17 18:53
- 数学 京都大学教授が証明。 「ABC予想・宇宙際タイヒミューラー予想」を、ザックリで説明お願致出来ますか? 1 2022/04/11 20:52
- 統計学 標本平均の分布 9 2022/06/08 09:47
- 工学 Pythonの3Dグラフ表示に関する質問です。 1 2022/12/06 15:03
- 数学 ε-δ論法について 3 2023/02/21 14:29
- 数学 N を2以上の自然数として,N 個のデータ{xn}を考える。以下の3条件が互いに同値であることを示し 1 2023/04/17 18:41
- 数学 リーマン和 1 2022/12/01 13:32
- 数学 x²+1=0に解が無限こあることを 9 2023/03/26 12:51
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
ちょっと先の未来クイズ第6問
2025年1月2日と1月3日に行われる、第101回箱根駅伝(東京箱根間往復大学駅伝競走)で、上位3位に入賞するチームはどこでしょう?
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
「これいらなくない?」という慣習、教えてください
現代になって省略されてきたとはいえ、必要性のない慣習や風習、ありませんか?
-
実数解を持つということ
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
重積分について
-
cosπ/2やcos0ってどのように求...
-
1 / (x^2+1)^(3/2)の積分について
-
複素数の偏角
-
極座標θ r φの範囲
-
置換積分法を用いて、次の定積...
-
線積分の問題
-
数Cサイクロイドについて
-
複素数平面の問題
-
sin(sinx)=cos(cosx)のグラフに...
-
数学の問題です。 写真の積分を...
-
1/5+4cosxの0→2πまでの積分で、...
-
∫[0→∞] 1/(x^3+1)dx
-
∫∫【0,π/2】×【0,π】sin(x+y)d...
-
π/2<=x^2+y^2<=π,0<=x<=yのとき...
-
積分 曲線の長さ
-
1/tanx=cosx/sinx ?
-
2重積分
-
ん?複素数zがargz=π/2を満たし...
-
1/(sinx+cosx)の積分
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
cosπ/2やcos0ってどのように求...
-
1 / (x^2+1)^(3/2)の積分について
-
位相がよく分かりません。 cos(...
-
重積分について
-
∫[0→∞] 1/(x^3+1)dx
-
なぜ3/4πがでてくるのか 分かり...
-
sinθ・cosθの積分に付いて
-
1/(sinx+cosx)の積分
-
cos π/8 の求め方
-
複素数のn乗根が解けません
-
積分∫[0→1]√(1-x^2)dx=π/4
-
数3の極限について教えてくださ...
-
∮ [0→1] arctanx dx の定積分を...
-
π/2<=x^2+y^2<=π,0<=x<=yのとき...
-
極座標θ r φの範囲
-
y=cosx(0≦x≦π/2)のy軸周りの回...
-
重積分の問題を教えてください。
-
逆三角関数の方程式の問題です...
-
重積分の変数変換後の積分範囲...
-
区間[0,1]で連続な関数f(x)に...
おすすめ情報