色彩を教える人になるための講座「色彩講師養成講座」の魅力とは>>

数1因数分解です。
⑴2x²-3xy-2y²+5x+5y-3

⑵x²-xy-2y²+2x-7y-3

⑶6x²+5xy-6y²+x-5y-1

途中式も詳しく教えてくださると嬉しいです!たすきがけの部分もできたら教えてください

質問者からの補足コメント

  • できないです(´・ω・`)

      補足日時:2016/04/24 01:20
gooドクター

A 回答 (2件)

このような問題は、数学の問題だから「きっと、必ず因数分解できるに違いない」と思ってアプローチできますが、現実の社会では「必ずしも因数分解できるとは限らない」と思わないといけません。



 ということで、行きあたりばったりにいろいろトライ・アンド・エラーしていても解けるとは限りませんので、ここはドンくさく、正攻法でやるしかありません。

 お示しのようなx, y の二次式は、一般的に
   (ax + by + c)(dx + ey + f)
と因数分解できます。a~f を整数に限らなければ、必ずこう書けます。
 あとは、a~f を整数になるかならないかで、整数で表わせなければ、「きれいに」因数分解できないということです。

 これを展開すると
  adx² + (ae + bd)xy + bey² + (af + cd)x + (bf + ce)y + cf
となるので、これと与えられた式を比べて、a~f を求める、という作業をするのが「正攻法」です。

 やってみましょう。(a, b, c)と(d, e, f) は対称形になるので、一方だけを示します。

(1)
ad = 2
ae + bd = -3
be = -2
af + cd = 5
bf + ce = 5
cf = -3
面倒ですが、これを解けば
 a=2, b=1, c=-1, d=1, e=-2, f=3
となります。
 つまり
2x² - 3xy - 2y² + 5x + 5y - 3
= ( 2x + y - 1)( x - 2y + 3)

(2)同様に
ad = 1
ae + bd = -1
be = -2
af + cd = 2
bf + ce = -7
cf = -3
これを解けば
 a=1, b=1, c=3, d=1, e=-2, f=-1
となります。
 つまり
x² - xy - 2y² + 2x - 7y - 3
= ( x + y + 3)( x - 2y - 1)

(3)さらに同様に
ad = 6
ae + bd = 5
be = -6
af + cd = 1
bf + ce = -5
cf = -1
これを解けば
 a=2, b=3, c=1, d=3, e=-2, f=-1
となります。
 つまり
6x² + 5xy - 6y² + x - 5y - 1
= ( 2x + 3y + 1)( 3x - 2y - 1)
    • good
    • 1

⑴2x²-3xy-2y²+5x+5y-3



=(2x+y)(x-2y)+5x+5y-3
={(2x+y)-1}{(x-2y)+3}
※添付画像が削除されました。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

gooドクター

人気Q&Aランキング