
No.2ベストアンサー
- 回答日時:
そもそも意味--定義が違う。
>昔は根と呼んでいたものが、解と呼ばれるようになった事情を
そんなことない。今でも根というし解という。
x,y,zの関係を示すある関数 f(x,y,z) において、f(x,y,z) = 0 となるときの、x,y,z が f の根 (root)(or 零点 (zero))という。
例えば、
x = 2y
x + y = 30
の解は、x=20,y=10
代入して
2y + y = 30
2y + y - 20 = 0
になり、g(y)= 2y + y - 20 とすると、y=20 は、gの根
お待たせしました。高校の嫌な思い出が蘇り、暮らしの疲れと重なって
ありふれたアレルギーが私にも来ました。PCを克服したノリで真向かう
と、優しそう。「これが分からなくてどうするの」という、苛立ちを
覚えられたかと。3つのお答えをいただきありがとうございます。
味わい分けましてからBAをとりあえず選ばさせていただきます。

No.3
- 回答日時:
「解と根と似たようなことばが2つあると紛らわしいから全て解に統一しよう」と言うだけですね。
あくまで高校教育過程でに話で、大学では解と根を使い分けます。
解は、「方程式」に対する物で、根は、「関数」あるいは「多項式」に対するものなので、『「方程式を解け」と言ったら「解」だ』という事情だと思います。
F(X)=a(X-α1)(X-α2)・・・(X-αn)=0
の根はα1,α2,・・・αn
F(X)=0 の解とは、F( α )=0 となるような数 α のこと。
なので
(X-1)²=0 の解は、X=1(重解という場合も有る様)
(X-1)²=0 の根は、X=1,1
として使い分けてると思います。
個人的には重解という言葉に違和感を感じますが・・。
No.1
- 回答日時:
一応、昭和48年入学の高校生から、根では無く、解と呼ぶようになったようです。
根(root)に関しては、平方根、立方根として、用語としては残っています。
基本的には、関数の値としての意味が強いので、方程式の場合は解と呼ぶようにしたのではないでしょうか?
2次方程式の解が一つしか無いときは、重根と呼ぶ方がしっくりくるような気がします。
ただ、これは高校だけの問題ですから、大学であれば、根はしっかり出てきます。(元々、定義が違いますから)
1973年からですね。
森重文師が入学されたのが1969年で
東大に行かず京大に行かれました。
数学は、ある程度の頭の良さと
命知らずのambition
美への憧れ
汚い手でべたべた触って
ごめんくださいませ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
self-evidentとtrivialの違いは?
-
八阪神社 戀愛籤 解籤
-
日本冰川神社解籤
-
高1の数学でこんな感じに解の公...
-
二次方程式x^2+2mx+2m+3=0が異...
-
共通解の問題についてです。こ...
-
重解とは??
-
【問題】 2次関数 f(x)=x^2−2ax...
-
Excelで3次方程式を解く方法
-
解なしと実数解なしのちがいは...
-
高1のものです。 現在私は河合...
-
2次不等式X^2+MX+M<0が実数...
-
二つの解α、βと判別式について...
-
数学の写真の質問です。 この問...
-
解と係数の関係
-
指数関数の和を解く方法?
-
x^2+12x+m=0において、2つの解...
-
Mathcadの方程式の解の求め方
-
高校数学についてです。 以下の...
-
3次と2次の方程式の共通解
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
なんでx軸と接しているところが...
-
【問題】 2次関数 f(x)=x^2−2ax...
-
高1の数学でこんな感じに解の公...
-
なぜ「異なる2つの実数解」と書...
-
判別式はyにおいても使えますか...
-
2次不等式X^2+MX+M<0が実数...
-
x^2+12x+m=0において、2つの解...
-
2次方程式でX^2-3x+2k=0 が...
-
共通解の問題についてです。こ...
-
二次方程式の解の書き方
-
解なしと実数解なしのちがいは...
-
2次方程式x^2-x-1=0の2つの解を...
-
高校数学についてです。 以下の...
-
「解せません」という表現
-
二次方程式x^2+2mx+2m+3=0が異...
-
高校数学の問題です! 2次方程...
-
重解とは??
-
【数Ⅰ】次の2次方程式が重解を...
-
3次と2次の方程式の共通解
-
数学Ⅲです。 f(x)=2x+ax/(x^2+1...
おすすめ情報
根とは離散的?
高校の数学の先生とは、プロ馬鹿で、
遊ばないから、失語症。
でも
毎日問題ばかり解いて、問題造りを
捌けるだけでも、スゴイ。
ピアノもバッハ、入門してしまえば
開眼は近い段階に、今私はいますが。
出題変奏曲の演奏に近い境地?
あまりしゃべるとピンボケになりますが。