r1とr2を幾何的に求めるらしいのですが
s+t=1以外思いつきません。
教えてもらえますか?

「r1とr2を幾何的に求めるらしいのですが」の質問画像

このQ&Aに関連する最新のQ&A

A 回答 (1件)

「s+t」が何を意味するのか不明ですが、「幾何学的に求める」と言っても、辺の長さや角度を使って求める訳ではありません(^^;)


重心の位置ベクトルは図に示されているように、ベクトル rR を内分します(コレが”幾何学的”)
したがって、図に描かれているベクトルの関係から(コレも”幾何学的”)図に示されているベクトルr1とr2が、
やはり、図に示されている式で表すことができると言うことです(^^)

参考になれば幸いです(^^v)
    • good
    • 0
この回答へのお礼

解けました!
ありがとうございました!

お礼日時:2017/04/20 15:02

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q並列回路の合成抵抗の公式が1/R=1/R1+1/R2になる理由を教えてください

学校のレポートでこのような課題が出て調べてみたら公式はどこにでも載っていました。しかし、その理由(理論)がかいてあるところはどこもありませんでした。どうか助けて下さい。お願いします。

Aベストアンサー

抵抗の逆数は、いわば、電気の通り道の太さ、言い換えれば、ホースの太さです。
同じ力(電圧)でも、ホースが太ければ太いほど、それに比例して電気が沢山通るようになります。
逆にホースが細ければ、通りにくくなります。

1/R=1/R1+1/R2 という式は、電気が通る道が2つに枝分かれしているときに流れる電気の量は、2つの道の太さを合体した太さを流れる電気の量という同じ、という、当たり前のことを表わしている式です。

勿論オームの法則からでも、全く同じことが言えます。
E=R1i1 → i1/E=1/R1
E=R2i2 → i2/E=1/R2
E=Ri → i/E=1/R
ところが、i=i1+i2(2つの経路の電流の足し算)なので
1/R=1/R1+1/R2
いっちょあがり。

QF(r)=f(r)r/r のときF(x)=f(r)x/rとなる理由

時間があるので大学1年の物理を再度、深く勉強しなおしているのですが、教科書に当たり前のように書いてあることが分からなくて、しかも聞ける人もいないので質問させていただきました。

教科書の 「中心力F(r)=f(r)r/r が保存力か調べる」とあり(最後のr/rとは位置ベクトルrの単位ベクトルのことです)そのすぐ次の行には「F(x)=f(r)x/rとなるので…」と説明が始まってます。なぜF(x)がこのように求まるのでしょうか?教えてください。

Aベストアンサー

keyguy さんのご回答の通りと思うのですが,
もう少しわかりやすく書いてみますか.

keyguy さんご指摘のように,ベクトルとスカラーの表記に問題があります.
ベクトル r を 【r】 のように書くことにします.

(1)  【F】(【r】) = f(r)【r】/r
ということですね.
x,y,z 方向の単位ベクトルをそれぞれ 【i】【j】【k】とすれば
(2)  【r】= x【i】+ y【j】+ z【k】
です.
つまり,(1)(2)を合わせてみると,
(3)  【F】(【r】) = f(r)x【i】/r + f(r)y【j】/r + f(r)z【k】/r
になっていて,これは【F】の x 成分が
(4)  f(r)x/r
であることを示しています.

Q抵抗R=5Ω、誘導リアクタンスXL=3Ωの直列回路にV=12+j16V

抵抗R=5Ω、誘導リアクタンスXL=3Ωの直列回路にV=12+j16Vを加えたときの回路に流れる電流Iとその大きさおよび位相角を求める詳しい途中式教えてください。
よろしくお願いします。

Aベストアンサー

次のサイトに解説記事がありますので参考にして下さい。
http://www.itoffice.jp/ITOFFELC3.htm
新人のための電気の基礎知識(交流回路)

5.2.ベクトル・複素数:数学の基礎1A-(1.9.複素数・ベクトル参照)
5.3.RLC回路 (瞬時値・位相の関係は5.4.位相参照)

1.9.複素数・ベクトル
公式・(a+jb)/(c+jd)=(ac+bd)/(c2+d2)+j((bc-ad)/(c2+d2))

求める電流は次のようになります。
I = V/Z = V/(R+jXL) = (12+j16)/(5+j3)
後は複素数の割り算ですので直ぐに求まると思います。
電流の絶対値は3.43Aです。

Q∫Kπ~K+1π|sint|dt=|∫Kπ~K+1πsintdt|

∫Kπ~K+1π|sint|dt=|∫Kπ~K+1πsintdt|
は、なぜいえるのですか?

解説では、Kπ~K+1πにおいてsintの符号が一致するため・・・
と書いてあるのですが、いまいちよくわかりません。

Aベストアンサー

たぶんこの問題には、Kは整数とする、または自然数とする、と書いてあると思います。さらに、K+1にはカッコが付いているはずです。

このとき、Kが自然数の時積分範囲は単位円の上半分または下半分となります。Kが偶数のときは上半分で、奇数の時は下半分になります。実際に積分してみましょう。
Kが偶数のとき、sintをこの範囲で積分すると、答えは2になります。|sint|を積分しても、2になります。
Kが奇数のとき、sintをこの範囲で積分すると、答えは―2になります。その絶対値は2となります。|sint|をせきぶんすると、2になります。
ちゃんと一致していますね。と言ってもわかりにくいと思うので、成り立たない場合を考えます。

sintをπ/2~3π/2の範囲で積分します。そうすると答えはゼロになります。|sint|を同じ範囲で積分すると、答えは2になります。

グラフを書いてみましょう。関数を積分するということは積分範囲とx軸と関数によって囲まれた面積を求めることと一致します。ただしこれは、積分範囲において関数が正の場合の話で、関数が負の値を取っている範囲ではマイナスが付きます。つまり、グラフをかいて、x軸よりも上にある、x軸と関数によって囲まれた図形の面積をすべて足して、x軸よりも下にある、x軸と関数によって囲まれた図形の面積を引くと、積分した値になるのです。グラフを書いてみると、積分範囲において、sinxの値が常に正、または負の場合、∫|sinx|dx=|∫sinx dx|が成り立つことがわかります。

たぶんこの問題には、Kは整数とする、または自然数とする、と書いてあると思います。さらに、K+1にはカッコが付いているはずです。

このとき、Kが自然数の時積分範囲は単位円の上半分または下半分となります。Kが偶数のときは上半分で、奇数の時は下半分になります。実際に積分してみましょう。
Kが偶数のとき、sintをこの範囲で積分すると、答えは2になります。|sint|を積分しても、2になります。
Kが奇数のとき、sintをこの範囲で積分すると、答えは―2になります。その絶対値は2となります。...続きを読む

Q物理です x^2+y^2<=1 x>=0 y>=0で与えられる重心を 求める問題で重心のx座標を

物理です
x^2+y^2<=1 x>=0 y>=0で与えられる重心を
求める問題で重心のx座標を
1/S∮(0→1)x√1-x^2となっているのですが
なぜこうなるのかがよく分かりません
解説お願いします

Aベストアンサー

重心は、任意の点の周りのモーメントを考えたときに、「微小部分の重量のモーメントの総和=全重量が重心位置にある場合のモーメント」となる点です。

 与えられたのは、半径 1 の 1/4 円の扇型です。その「微小部分」を、x座標を x ~ x+dx の「縦割り」部分にすると、面積は「高さ」が √(1 - x) 、幅が dx ですから
 ΔS = √(1 - x)*dx
です。
 この部分原点回りのモーメントの「腕の長さ」は x ですから、物理的な「力」を考えるために密度を ρ として、モーメントは
  ρ*xΔS = ρ*x√(1 - x)*dx
です。従って、「微小部分の重量のモーメントの総和」は
  ∫[0~1] ρ*x√(1 - x) dx    (1)
です。

 これに対して、「全重量が重心位置にある場合のモーメント」は、重心の x 座標を x0 とすると
  ρ*S*x0     (2)

(1)と(2)が等しくなるので
  ρ*S*x0 = ∫[0~1] ρ*x√(1 - x) dx

 従って
  x0 = (1/S)∫[0~1] x√(1 - x) dx

 S は 1/4 円なので
   S=(1/4)パイr^2 = パイ/4
ですね。

重心は、任意の点の周りのモーメントを考えたときに、「微小部分の重量のモーメントの総和=全重量が重心位置にある場合のモーメント」となる点です。

 与えられたのは、半径 1 の 1/4 円の扇型です。その「微小部分」を、x座標を x ~ x+dx の「縦割り」部分にすると、面積は「高さ」が √(1 - x) 、幅が dx ですから
 ΔS = √(1 - x)*dx
です。
 この部分原点回りのモーメントの「腕の長さ」は x ですから、物理的な「力」を考えるために密度を ρ として、モーメントは
  ρ*xΔS = ρ*x√(1 - x)*dx
です。従っ...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報